Near NP-Completeness for Detecting p-adic Rational Roots in One Variable

We show that deciding whether a sparse univariate polynomial has a p-adic rational root can be done in NP for most inputs. We also prove a polynomial-time upper bound for trinomials with suitably generic p-adic Newton polygon. We thus improve the best previous complexity upper bound of EXPTIME. We also prove an unconditional complexity lower bound of NP-hardness with respect to randomized reductions for general univariate polynomials. The best previous lower bound assumed an unproved hypothesis on the distribution of primes in arithmetic progression. We also discuss how our results complement analogous results over the real numbers.

[1]  J. Maurice Rojas,et al.  Faster real feasibility via circuit discriminants , 2009, ISSAC '09.

[2]  Paul J. Cohen,et al.  Decision procedures for real and p‐adic fields , 1969 .

[3]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[4]  S. Bostrom,et al.  Jennifer , 1983 .

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[7]  Jeffrey Shallit,et al.  Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.

[8]  Wouter Castryck,et al.  Computing Zeta Functions of Nondegenerate Curves , 2006, IACR Cryptol. ePrint Arch..

[9]  D. Cantor,et al.  Factoring polynomials over p-adic fields , 2000 .

[10]  Marek Karpinski,et al.  Counting curves and their projections , 2005, computational complexity.

[11]  Bjorn Poonen Heuristics for the Brauer–Manin Obstruction for Curves , 2006, Exp. Math..

[12]  Felipe Cucker,et al.  Complexity estimates depending on condition and round-off error , 1998, JACM.

[13]  Jan Denef,et al.  P-adic and real subanalytic sets , 1988 .

[14]  Alan G. B. Lauder Counting Solutions to Equations in Many Variables over Finite Fields , 2004, Found. Comput. Math..

[15]  Hendrik W. Lenstra,et al.  Primality Testing with Gaussian Periods , 2002, FSTTCS.

[16]  J. Maurice Rojas,et al.  Efficiently Detecting Torsion Points and Subtori , 2005, ArXiv.

[17]  J. Colliot-Thélène The Hasse principle in a pencil of algebraic varieties , 1998 .

[18]  Jennifer Whitehead,et al.  Computational Complexity over thep-adic Numbers , 1997, J. Complex..

[19]  A. Levine,et al.  New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.

[20]  M. Mignotte Some Useful Bounds , 1983 .

[21]  H. Lenstra Finding small degree factors of lacunary polynomials , 1999 .

[22]  David A. Plaisted,et al.  New NP-hard and NP-complete polynomial and integer divisibility problems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[23]  J. M. Rojas,et al.  Interpolating Between Quantum and Classical Complexity Classes , 2006 .

[24]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[25]  S. A. Sherman,et al.  Providence , 1906 .

[26]  C. Pomerance,et al.  There are infinitely many Carmichael numbers , 1994 .

[27]  Martin E. Avendano,et al.  Ultrametric Root Counting , 2009, 0901.3393.

[28]  A. Robert,et al.  A Course in p-adic Analysis , 2000 .

[29]  J. Maurice Rojas Arithmetic multivariate Descartes' rule , 2001 .

[30]  Nicholas Kalouptsidis,et al.  Efficient Algorithms for , 1999 .

[31]  J. Maurice Rojas Additive Complexity and the Roots of Polynomials Over Number Fields and p-adic Fields , 2002 .

[32]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[33]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[34]  B. Poonen The Hasse Principle for Complete Intersections in Projective Space , 2001 .

[35]  A. L. Chistov Efficient Factoring Polynomials over Local Fields and Its Applications , 1990 .

[36]  B. Poonen An explicit algebraic family of genus-one curves violating the Hasse principle , 1999, math/9910124.

[37]  László Babai,et al.  Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes , 1988, J. Comput. Syst. Sci..

[38]  Marek Karpinski,et al.  Counting curves and their projections , 1993, computational complexity.

[39]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[40]  H. Lenstra On the factorization of lacunary polynomials , 1999 .