Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range

[1]  Yingbang Yao,et al.  Direct Measurement of Large Electrocaloric Effect in Ba(ZrxTi1-x)O3 Ceramics. , 2018, ACS applied materials & interfaces.

[2]  Q. Zhang,et al.  The refrigerant is also the pump , 2017, Science.

[3]  Roy Kornbluh,et al.  Highly efficient electrocaloric cooling with electrostatic actuation , 2017, Science.

[4]  S. Hyun,et al.  Giant Negative Electrocaloric Effects of Hf0.5Zr0.5O2 Thin Films , 2016, Advanced materials.

[5]  S. Pennycook,et al.  Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films , 2015, Science.

[6]  Yang Liu,et al.  Giant Negative Electrocaloric Effect in Antiferroelectric La‐Doped Pb(ZrTi)O3 Thin Films Near Room Temperature , 2015, Advanced materials.

[7]  S. Trolier-McKinstry,et al.  Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion , 2014 .

[8]  R. Pirc,et al.  Negative electrocaloric effect in antiferroelectric PbZrO3 , 2014 .

[9]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[10]  Qi Zhang,et al.  A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pb0.8Ba0.2ZrO3 Thin Film at Room Temperature , 2013 .

[11]  Shi-Chune Yao,et al.  A chip scale electrocaloric effect based cooling device , 2013 .

[12]  Laurent Pilon,et al.  Direct thermal to electrical energy conversion using 9.5/65/35 PLZT ceramics in the ergodic relaxor phase , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  Meysam Sharifzadeh Mirshekarloo,et al.  Ferroelastic Strain Induced Antiferroelectric‐Ferroelectric Phase Transformation in Multilayer Thin Film Structures , 2012 .

[14]  Matjaz Valant,et al.  Electrocaloric materials for future solid-state refrigeration technologies , 2012 .

[15]  A. Akbarzadeh,et al.  Finite-temperature properties of Ba(Zr,Ti)O3 relaxors from first principles. , 2012, Physical review letters.

[16]  R. Pirc,et al.  Electrocaloric effect in ferroelectric polymers , 2012 .

[17]  M. Itoh,et al.  Relaxor Pb(Mg(1/3)Nb(2/3))O3: a ferroelectric with multiple inhomogeneities. , 2009, Physical review letters.

[18]  Qiming Zhang,et al.  Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature , 2008, Science.

[19]  Qi Zhang,et al.  Development of residual stress in sol-gel derived Pb(Zr,Ti)O3 films: An experimental study , 2008 .

[20]  N. Mathur,et al.  Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3 , 2005, Science.

[21]  L. Pintilie,et al.  Properties of Pb(Zr0.92Ti0.08)O3 thin films deposited by sol–gel , 2004 .

[22]  Longjie Zhou,et al.  TEM study of superstructure in a perovskite lead lanthanum zirconate stannate titanate ceramic , 2003 .

[23]  Seung Jin Yeom,et al.  Platinum(100) hillock growth in a Pt/Ti electrode stack for ferroelectric random access memory , 2003 .

[24]  A. Maiti,et al.  Structural and electronic properties of PbTiO3, PbZrO3, and PbZr0.5Ti0.5O3: First-principles density-functional studies , 2002 .

[25]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[26]  Yening Wang,et al.  PZT thin films with preferred-orientation induced by external stress , 2000 .

[27]  Z. Ye,et al.  Dielectric dispersion and critical behavior in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 , 2000 .

[28]  J. Briscoe,et al.  Pyroelectric conversion cycles , 1985 .

[29]  Xiaolin Wang,et al.  Energy-storage performance and pyroelectric energy harvesting effect of PNZST antiferroelectric thin films , 2016, Journal of Materials Science: Materials in Electronics.

[30]  D. Payne,et al.  The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 ceramics , 1981 .