On dynamic multi-objective optimization, classification and performance measures

In this work we focus on defining how dynamism can be modeled in the context of multi-objective optimization. Based on this, we construct a component oriented classification for dynamic multi-objective optimization problems. For each category we provide synthetic examples that depict in a more explicit way the defined model. We do this either by positioning existing synthetic benchmarks with respect to the proposed classification or through new problem formulations. In addition, an online dynamic MNK-landscape formulation is introduced together with a new comparative metric for the online dynamic multi-objective context.

[1]  Peter A. N. Bosman,et al.  Learning and anticipation in online dynamic optimization with evolutionary algorithms: the stochastic case , 2007, GECCO '07.

[2]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[3]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[4]  G. Rudolph,et al.  Evolutionary Optimization of Dynamic Multi-objective Test Functions , 2006 .

[5]  Kiyoshi Tanaka,et al.  Insights on properties of multiobjective MNK-landscapes , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[6]  Peter A. N. Bosman,et al.  Evolutionary Multiobjective Optimization for Dynamic Hospital Resource Management , 2009, EMO.

[7]  Kenneth A. De Jong,et al.  Evolving in a Changing World , 1999, ISMIS.

[8]  David Wallace,et al.  Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach , 2006, GECCO.

[9]  Julio Ortega Lopera,et al.  Performance Measures for Dynamic Multi-Objective Optimization , 2009, IWANN.

[10]  Günter Rudolph,et al.  Evolutionary Optimization of Dynamic Multiobjective Functions , 2006 .

[11]  Ba-Ngu Vo,et al.  On performance evaluation of multi-object filters , 2008, 2008 11th International Conference on Information Fusion.

[12]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[13]  K. Yaniasaki,et al.  Dynamic optimization by evolutionary algorithms applied to financial time series , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[14]  Karsten Weicker,et al.  Performance Measures for Dynamic Environments , 2002, PPSN.

[15]  Peter A. N. Bosman,et al.  Learning, anticipation and time-deception in evolutionary online dynamic optimization , 2005, GECCO '05.

[16]  Bojin Zheng,et al.  Perspectives in Dynamic Optimization Evolutionary Algorithm , 2010, ISICA.

[17]  Hussein A. Abbass,et al.  Multiobjective optimization for dynamic environments , 2005, 2005 IEEE Congress on Evolutionary Computation.

[18]  Philippe Collard,et al.  An Evolutionary Approach for Time Dependent Optimization , 1997, Int. J. Artif. Intell. Tools.

[19]  Xiaodong Li,et al.  On performance metrics and particle swarm methods for dynamic multiobjective optimization problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[20]  Kalyanmoy Deb,et al.  Dynamic Multiobjective Optimization Problems: Test Cases, Approximation, and Applications , 2003, EMO.

[21]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.