Structural and Functional Comparison of the RING Domains of Two p53 E3 Ligases, Mdm2 and Pirh2*

The tumor suppressor p53 maintains genome stability and prevents malignant transformation by promoting cell cycle arrest and apoptosis. Both Mdm2 and Pirh2 have been shown to ubiquitylate p53 through their RING domains, thereby targeting p53 for proteasomal degradation. Using structural and functional analyses, here we show that the Pirh2 RING domain differs from the Mdm2 RING domain in its oligomeric state, surface charge distribution, and zinc coordination scheme. Pirh2 also possesses weaker E3 ligase activity toward p53 and directs ubiquitin to different residues on p53. NMR and mutagenesis studies suggest that whereas Pirh2 and Mdm2 share a conserved E2 binding site, the seven C-terminal residues of the Mdm2 RING directly contribute to Mdm2 E3 ligase activity, a feature unique to Mdm2 and absent in the Pirh2 RING domain. This comprehensive analysis of the Pirh2 and Mdm2 RING domains provides structural and mechanistic insight into p53 regulation by its E3 ligases.

[1]  E. Appella,et al.  Control of p53 multimerization by Ubc13 is JNK-regulated , 2009, Proceedings of the National Academy of Sciences.

[2]  Tharan Srikumar,et al.  Global map of SUMO function revealed by protein-protein interaction and genetic networks. , 2009, Molecular cell.

[3]  J. Lukin,et al.  Molecular basis of Pirh2-mediated p53 ubiquitylation , 2008, Nature Structural &Molecular Biology.

[4]  D. Vaux,et al.  Structures of the cIAP2 RING Domain Reveal Conformational Changes Associated with Ubiquitin-conjugating Enzyme (E2) Recruitment* , 2008, Journal of Biological Chemistry.

[5]  Yi Tang,et al.  Acetylation Is Indispensable for p53 Activation , 2008, Cell.

[6]  M. Lei,et al.  Arsenic degrades PML or PML–RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway , 2008, Nature Cell Biology.

[7]  D. Vaux,et al.  Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans , 2008, Cell Death and Differentiation.

[8]  P. Brzovic,et al.  E2–BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages , 2007, Nature Structural &Molecular Biology.

[9]  Michael A. Dyer,et al.  MDMX: from bench to bedside , 2007, Journal of Cell Science.

[10]  S. Yamasaki,et al.  Cytoplasmic destruction of p53 by the endoplasmic reticulum‐resident ubiquitin ligase ‘Synoviolin’ , 2007, The EMBO journal.

[11]  A. Kentsis,et al.  The Mdm2 RING domain C‐terminus is required for supramolecular assembly and ubiquitin ligase activity , 2007, The EMBO journal.

[12]  K. Vousden,et al.  An essential function of the extreme C‐terminus of MDM2 can be provided by MDMX , 2007, The EMBO journal.

[13]  G. Wahl,et al.  Regulating the p53 pathway: in vitro hypotheses, in vivo veritas , 2006, Nature Reviews Cancer.

[14]  Laurent Le Cam,et al.  E4F1 Is an Atypical Ubiquitin Ligase that Modulates p53 Effector Functions Independently of Degradation , 2006, Cell.

[15]  H. Dyson,et al.  Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. , 2006, Journal of molecular biology.

[16]  Xin Wu,et al.  Differential response between the p53 ubiquitin-protein ligases Pirh2 and MdM2 following DNA damage in human cancer cells. , 2006, Experimental cell research.

[17]  John Calvin Reed,et al.  Regulation of p53 Localization and Activity by Ubc13 , 2006, Molecular and Cellular Biology.

[18]  C. Robson,et al.  Human PIRH2 Enhances Androgen Receptor Signaling through Inhibition of Histone Deacetylase 1 and Is Overexpressed in Prostate Cancer , 2006, Molecular and Cellular Biology.

[19]  R. Copeland,et al.  A second p53 binding site in the central domain of Mdm2 is essential for p53 ubiquitination. , 2006, Biochemistry.

[20]  Yi Zhang,et al.  Structure of a Bmi-1-Ring1B Polycomb Group Ubiquitin Ligase Complex* , 2006, Journal of Biological Chemistry.

[21]  Oliver Weichenrieder,et al.  Structure and E3‐ligase activity of the Ring–Ring complex of Polycomb proteins Bmi1 and Ring1b , 2006, The EMBO journal.

[22]  G. Wahl,et al.  Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4 , 2006, Cell Death and Differentiation.

[23]  S. Francoz,et al.  Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  O. Myklebost,et al.  Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[25]  W. Deppert,et al.  Transcription-independent pro-apoptotic functions of p53. , 2005, Current opinion in cell biology.

[26]  Jun Qin,et al.  ARF-BP1/Mule Is a Critical Mediator of the ARF Tumor Suppressor , 2005, Cell.

[27]  C. Dominguez,et al.  Solution structure of the ubiquitin-conjugating enzyme UbcH5B. , 2004, Journal of molecular biology.

[28]  Wei-Guo Zhu,et al.  Expression of Pirh2, a newly identified ubiquitin protein ligase, in lung cancer. , 2004, Journal of the National Cancer Institute.

[29]  Chris F. Taylor,et al.  A common open representation of mass spectrometry data and its application to proteomics research , 2004, Nature Biotechnology.

[30]  A. Jochemsen,et al.  Mdmx and Mdm2: Brothers in Arms? , 2004, Cell cycle.

[31]  Robertson Craig,et al.  TANDEM: matching proteins with tandem mass spectra. , 2004, Bioinformatics.

[32]  Patrick Dowd,et al.  The ubiquitin ligase COP1 is a critical negative regulator of p53 , 2004, Nature.

[33]  Rolf Boelens,et al.  Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches. , 2004, Structure.

[34]  L. Vassilev,et al.  In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 , 2004, Science.

[35]  D. Green,et al.  p53's Believe It or Not: Lessons on Transcription-Independent Death , 2003, Journal of Clinical Immunology.

[36]  A. Lyakhovich,et al.  Supramolecular Complex Formation between Rad6 and Proteins of the p53 Pathway during DNA Damage-Induced Response , 2003, Molecular and Cellular Biology.

[37]  Guillermina Lozano,et al.  Pirh2, a p53-Induced Ubiquitin-Protein Ligase, Promotes p53 Degradation , 2003, Cell.

[38]  A. Jochemsen,et al.  Mutual Dependence of MDM2 and MDMX in Their Functional Inactivation of p53* , 2002, The Journal of Biological Chemistry.

[39]  M. Roussel,et al.  The RING domain of Mdm2 can inhibit cell proliferation. , 2002, Cancer research.

[40]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[41]  D. Woods,et al.  C-Terminal Ubiquitination of p53 Contributes to Nuclear Export , 2001, Molecular and Cellular Biology.

[42]  M. King,et al.  BRCA1 RING Domain Cancer-predisposing Mutations , 2001, The Journal of Biological Chemistry.

[43]  N. Little,et al.  Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms , 2001, EMBO reports.

[44]  Rachel E. Klevit,et al.  Structure of a BRCA1–BARD1 heterodimeric RING–RING complex , 2001, Nature Structural Biology.

[45]  Valerie Reinke,et al.  Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53 , 2001, Nature Genetics.

[46]  A. Weissman Ubiquitin and proteasomes: Themes and variations on ubiquitylation , 2001, Nature Reviews Molecular Cell Biology.

[47]  R. Hay,et al.  Multiple C-Terminal Lysine Residues Target p53 for Ubiquitin-Proteasome-Mediated Degradation , 2000, Molecular and Cellular Biology.

[48]  Ping Wang,et al.  Structure of a c-Cbl–UbcH7 Complex RING Domain Function in Ubiquitin-Protein Ligases , 2000, Cell.

[49]  Shengyun Fang,et al.  Mdm2 Is a RING Finger-dependent Ubiquitin Protein Ligase for Itself and p53* , 2000, The Journal of Biological Chemistry.

[50]  M. Jackson,et al.  MdmX Protects p53 from Mdm2-Mediated Degradation , 2000, Molecular and Cellular Biology.

[51]  Hirofumi Tanaka,et al.  Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53 , 1997, FEBS letters.

[52]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[53]  A. Levine,et al.  Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain , 1996, Science.

[54]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[55]  Lawrence A. Donehower,et al.  Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53 , 1995, Nature.

[56]  Guillermina Lozano,et al.  Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53 , 1995, Nature.

[57]  C. Sander,et al.  Dali: a network tool for protein structure comparison. , 1995, Trends in biochemical sciences.

[58]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[59]  P. Freemont,et al.  The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto‐oncoprotein PML. , 1995, The EMBO journal.

[60]  E. Grishin,et al.  Three-dimensional structure of ectatomin from Ectatomma tuberculatum ant venom , 1995, Journal of biomolecular NMR.

[61]  M. Scheffner,et al.  The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53 , 1993, Cell.

[62]  L. Banks,et al.  Isolation of human-p53-specific monoclonal antibodies and their use in the studies of human p53 expression. , 1986, European journal of biochemistry.