Quantum Walks: Schur Functions Meet Symmetry Protected Topological Phases

This paper uncovers and exploits a link between a central object in harmonic analysis, the so-called Schur functions, and the very hot topic of symmetry protected topological phases of quantum matter. This connection is found in the setting of quantum walks, i.e. quantum analogs of classical random walks. We prove that topological indices classifying symmetry protected topological phases of quantum walks are encoded by matrix Schur functions built out of the walk. This main result of the paper reduces the calculation of these topological indices to a linear algebra problem: calculating symmetry indices of finite-dimensional unitaries obtained by evaluating such matrix Schur functions at the symmetry protected points $$\pm 1$$ ± 1 . The Schur representation fully covers the complete set of symmetry indices for 1D quantum walks with a group of symmetries realizing any of the symmetry types of the tenfold way. The main advantage of the Schur approach is its validity in the absence of translation invariance, which allows us to go beyond standard Fourier methods, leading to the complete classification of non-translation invariant phases for typical examples.

[1]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[2]  Shinsei Ryu,et al.  Topological insulators and superconductors: tenfold way and dimensional hierarchy , 2009, 0912.2157.

[3]  K. Tamvakis Symmetries , 2019, Undergraduate Texts in Physics.

[4]  Topological Insulators from the Perspective of Non-commutative Geometry and Index Theory , 2016, 1607.04013.

[5]  T. Kailath A Theorem of I. Schur and Its Impact on Modern Signal Processing , 1986 .

[6]  A. H. Werner,et al.  Bulk-edge correspondence of one-dimensional quantum walks , 2015, 1502.02592.

[7]  Guo Chuan Thiang On the K-Theoretic Classification of Topological Phases of Matter , 2014, 1406.7366.

[8]  Alexei Kitaev,et al.  Periodic table for topological insulators and superconductors , 2009, 0901.2686.

[9]  David Pérez-García,et al.  Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .

[10]  G. Pólya Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .

[11]  C. Foias,et al.  The commutant lifting approach to interpolation problems , 1990 .

[12]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[13]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[14]  Takuya Kitagawa,et al.  Topological phenomena in quantum walks: elementary introduction to the physics of topological phases , 2012, Quantum Information Processing.

[15]  H. Schulz-Baldes $\Bbb Z_{2}$-indices and factorization properties of odd symmetric Fredholm operators , 2013, Documenta Mathematica.

[16]  Svante Janson,et al.  Weak limits for quantum random walks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  David S. Watkins,et al.  Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..

[18]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[19]  Carlos Mochon Anyons from nonsolvable finite groups are sufficient for universal quantum computation , 2003 .

[20]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[21]  J. Bourgain,et al.  Communications in Mathematical Physics Quantum Recurrence of a Subspace and Operator-Valued Schur Functions , 2022 .

[22]  Bernd Kirstein,et al.  Matricial version of the classical Schur problem , 1992 .

[23]  A. H. Werner,et al.  A Quantum Dynamical Approach to Matrix Khrushchev's Formulas , 2014, 1405.0985.

[24]  H. Schulz-Baldes,et al.  Index Pairings in Presence of Symmetries with Applications to Topological Insulators , 2015, 1503.04834.

[25]  A. H. Werner,et al.  Recurrence for Discrete Time Unitary Evolutions , 2012, 1202.3903.

[26]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[27]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[28]  A. H. Werner,et al.  Quantum walks in external gauge fields , 2018, Journal of Mathematical Physics.

[29]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[30]  Alexei Kitaev,et al.  Topological phases and quantum computation , 2008, 0904.2771.

[31]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[32]  Propagation of quantum walks in electric fields. , 2013, Physical review letters.

[33]  E. Prodan,et al.  Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics , 2015, 1510.08744.

[34]  C. Foias,et al.  Harmonic Analysis of Operators on Hilbert Space , 1970 .

[35]  A. H. Werner,et al.  Complete homotopy invariants for translation invariant symmetric quantum walks on a chain , 2018, 1804.04520.

[36]  F. Gesztesy,et al.  On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.

[37]  Barry Simon,et al.  The Analytic Theory of Matrix Orthogonal Polynomials , 2007, 0711.2703.

[38]  Michael I. Weinstein,et al.  Topologically Protected States in One-Dimensional Systems , 2014, 1405.4569.

[39]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[40]  Volkher B. Scholz,et al.  Asymptotic behavior of quantum walks with spatio-temporal coin fluctuations , 2012, Quantum Inf. Process..

[41]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[42]  S. Denisov Continuous analogs of polynomials orthogonal on the unit circle. Krein systems , 2009, 0908.4049.

[43]  A. H. Werner,et al.  The Topological Classification of One-Dimensional Symmetric Quantum Walks , 2016, Annales Henri Poincaré.

[44]  Hideaki Obuse,et al.  Bulk-boundary correspondence for chiral symmetric quantum walks , 2013, 1303.1199.

[45]  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[46]  Leandro Moral,et al.  Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .

[47]  Xiao-Gang Wen,et al.  Classification of gapped symmetric phases in one-dimensional spin systems , 2010, 1008.3745.

[48]  J. Asbóth,et al.  Scattering theory of topological phases in discrete-time quantum walks , 2014, 1401.2673.

[49]  Takuya Kitagawa,et al.  Exploring topological phases with quantum walks , 2010, 1003.1729.

[50]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[51]  J. Asbóth,et al.  Symmetries, topological phases, and bound states in the one-dimensional quantum walk , 2012, 1208.2143.

[52]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[53]  F. Grunbaum,et al.  A generalization of Schur functions: Applications to Nevanlinna functions, orthogonal polynomials, random walks and unitary and open quantum walks , 2017, 1702.04032.