Quantum Walks: Schur Functions Meet Symmetry Protected Topological Phases
暂无分享,去创建一个
A. H. Werner | F. A. Grünbaum | C. Cedzich | T. Geib | L. Velázquez | R. F. Werner | R. Werner | F. Grünbaum | L. Vel'azquez | C. Cedzich | T. Geib | A. Werner | L. Velázquez
[1] Andris Ambainis,et al. One-dimensional quantum walks , 2001, STOC '01.
[2] Shinsei Ryu,et al. Topological insulators and superconductors: tenfold way and dimensional hierarchy , 2009, 0912.2157.
[3] K. Tamvakis. Symmetries , 2019, Undergraduate Texts in Physics.
[4] Topological Insulators from the Perspective of Non-commutative Geometry and Index Theory , 2016, 1607.04013.
[5] T. Kailath. A Theorem of I. Schur and Its Impact on Modern Signal Processing , 1986 .
[6] A. H. Werner,et al. Bulk-edge correspondence of one-dimensional quantum walks , 2015, 1502.02592.
[7] Guo Chuan Thiang. On the K-Theoretic Classification of Topological Phases of Matter , 2014, 1406.7366.
[8] Alexei Kitaev,et al. Periodic table for topological insulators and superconductors , 2009, 0901.2686.
[9] David Pérez-García,et al. Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .
[10] G. Pólya. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .
[11] C. Foias,et al. The commutant lifting approach to interpolation problems , 1990 .
[12] C. Kane,et al. Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.
[13] Aharonov,et al. Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[14] Takuya Kitagawa,et al. Topological phenomena in quantum walks: elementary introduction to the physics of topological phases , 2012, Quantum Information Processing.
[15] H. Schulz-Baldes. $\Bbb Z_{2}$-indices and factorization properties of odd symmetric Fredholm operators , 2013, Documenta Mathematica.
[16] Svante Janson,et al. Weak limits for quantum random walks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] David S. Watkins,et al. Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..
[18] A. Kitaev. Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.
[19] Carlos Mochon. Anyons from nonsolvable finite groups are sufficient for universal quantum computation , 2003 .
[20] L. Molenkamp,et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.
[21] J. Bourgain,et al. Communications in Mathematical Physics Quantum Recurrence of a Subspace and Operator-Valued Schur Functions , 2022 .
[22] Bernd Kirstein,et al. Matricial version of the classical Schur problem , 1992 .
[23] A. H. Werner,et al. A Quantum Dynamical Approach to Matrix Khrushchev's Formulas , 2014, 1405.0985.
[24] H. Schulz-Baldes,et al. Index Pairings in Presence of Symmetries with Applications to Topological Insulators , 2015, 1503.04834.
[25] A. H. Werner,et al. Recurrence for Discrete Time Unitary Evolutions , 2012, 1202.3903.
[26] J. Schur,et al. Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .
[27] Barry Simon,et al. Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.
[28] A. H. Werner,et al. Quantum walks in external gauge fields , 2018, Journal of Mathematical Physics.
[29] E. J. Mele,et al. Quantum spin Hall effect in graphene. , 2004, Physical review letters.
[30] Alexei Kitaev,et al. Topological phases and quantum computation , 2008, 0904.2771.
[31] X. Qi,et al. Topological insulators and superconductors , 2010, 1008.2026.
[32] Propagation of quantum walks in electric fields. , 2013, Physical review letters.
[33] E. Prodan,et al. Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics , 2015, 1510.08744.
[34] C. Foias,et al. Harmonic Analysis of Operators on Hilbert Space , 1970 .
[35] A. H. Werner,et al. Complete homotopy invariants for translation invariant symmetric quantum walks on a chain , 2018, 1804.04520.
[36] F. Gesztesy,et al. On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.
[37] Barry Simon,et al. The Analytic Theory of Matrix Orthogonal Polynomials , 2007, 0711.2703.
[38] Michael I. Weinstein,et al. Topologically Protected States in One-Dimensional Systems , 2014, 1405.4569.
[39] A. Kitaev. Quantum computations: algorithms and error correction , 1997 .
[40] Volkher B. Scholz,et al. Asymptotic behavior of quantum walks with spatio-temporal coin fluctuations , 2012, Quantum Inf. Process..
[41] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[42] S. Denisov. Continuous analogs of polynomials orthogonal on the unit circle. Krein systems , 2009, 0908.4049.
[43] A. H. Werner,et al. The Topological Classification of One-Dimensional Symmetric Quantum Walks , 2016, Annales Henri Poincaré.
[44] Hideaki Obuse,et al. Bulk-boundary correspondence for chiral symmetric quantum walks , 2013, 1303.1199.
[45] Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.
[46] Leandro Moral,et al. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .
[47] Xiao-Gang Wen,et al. Classification of gapped symmetric phases in one-dimensional spin systems , 2010, 1008.3745.
[48] J. Asbóth,et al. Scattering theory of topological phases in discrete-time quantum walks , 2014, 1401.2673.
[49] Takuya Kitagawa,et al. Exploring topological phases with quantum walks , 2010, 1003.1729.
[50] E. J. Mele,et al. Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.
[51] J. Asbóth,et al. Symmetries, topological phases, and bound states in the one-dimensional quantum walk , 2012, 1208.2143.
[52] J. Schur,et al. Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .
[53] F. Grunbaum,et al. A generalization of Schur functions: Applications to Nevanlinna functions, orthogonal polynomials, random walks and unitary and open quantum walks , 2017, 1702.04032.