Data Mining Techniques in Cancer Research Area

In this paper we present an analysis of the prediction of survivability on different attributes, rate ofbreast cancer patients using data mining techniques. The data used is the real data. Thepreprocessed data set, which have all the available twelve fields from the database. We haveinvestigated data mining techniques:

[1]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[2]  H. Joensuu,et al.  Artificial Neural Networks Applied to Survival Prediction in Breast Cancer , 1999, Oncology.

[3]  Hsinchun Chen,et al.  Medical Data Mining on the Internet: Research on a Cancer Information System , 1999, Artificial Intelligence Review.

[4]  Korbinian Strimmer,et al.  An empirical Bayes approach to inferring large-scale gene association networks , 2005, Bioinform..

[5]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[6]  Sam Yuan Sung,et al.  Consensus clustering , 2005, Intell. Data Anal..

[7]  M. Girolami,et al.  Identification of prognostic signatures in breast cancer microarray data using Bayesian techniques , 2006, Journal of The Royal Society Interface.

[8]  Dursun Delen,et al.  Predicting breast cancer survivability: a comparison of three data mining methods , 2005, Artif. Intell. Medicine.

[9]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[10]  Michele Pinelli,et al.  Interactive data analysis and clustering of genomic data , 2008, Neural Networks.

[11]  Juha Vesanto,et al.  SOM-based data visualization methods , 1999, Intell. Data Anal..

[12]  Isabelle Guyon,et al.  A Stability Based Method for Discovering Structure in Clustered Data , 2001, Pacific Symposium on Biocomputing.

[13]  B. Hankey,et al.  The surveillance, epidemiology, and end results program: a national resource. , 1999, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[14]  Ron Shamir,et al.  A Probabilistic Methodology for Integrating Knowledge and Experiments on Biological Networks , 2006, J. Comput. Biol..

[15]  James M. Bower,et al.  Computational modeling of genetic and biochemical networks , 2001 .

[16]  Krzysztof J. Cios,et al.  Uniqueness of medical data mining , 2002, Artif. Intell. Medicine.

[17]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[18]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[19]  Farren J. Isaacs,et al.  Computational studies of gene regulatory networks: in numero molecular biology , 2001, Nature Reviews Genetics.

[20]  R. Kay The Analysis of Survival Data , 2012 .

[21]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[22]  Rich Caruana,et al.  Meta Clustering , 2006, Sixth International Conference on Data Mining (ICDM'06).

[23]  Andrew J. Bulpitt,et al.  A Primer on Learning in Bayesian Networks for Computational Biology , 2007, PLoS Comput. Biol..

[24]  Ludmila I. Kuncheva,et al.  Evaluation of Stability of k-Means Cluster Ensembles with Respect to Random Initialization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  M K Kerr,et al.  Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Zhi-Hua Zhou,et al.  Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble , 2003, IEEE Transactions on Information Technology in Biomedicine.

[27]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[28]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[29]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .