Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation

[1]  Peng Zhou,et al.  Heterogeneous‐Interface‐Enhanced Adsorption of Organic and Hydroxyl for Biomass Electrooxidation , 2022, Advanced materials.

[2]  Li Yang,et al.  Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation , 2022, Nature Communications.

[3]  A. Klinkova,et al.  Nickel-Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution. , 2022, Angewandte Chemie.

[4]  R. Ma,et al.  Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity , 2022, Nature Communications.

[5]  K. Xiao,et al.  Activating Lattice Oxygen in Layered Lithium Oxides through Cation Vacancies for Enhanced Urea Electrolysis. , 2022, Angewandte Chemie.

[6]  Reshma R. Rao,et al.  Spectroelectrochemical Analysis of the Water Oxidation Mechanism on Doped Nickel Oxides , 2022, Journal of the American Chemical Society.

[7]  H. Hahn,et al.  Nanostructured Metallic Glass in a Highly Upgraded Energy State Contributing to Efficient Catalytic Performance , 2022, Advanced materials.

[8]  Jia Liu,et al.  Pathway Manipulation via Ni, Co, and V Ternary Synergism to Realize High Efficiency for Urea Electrocatalytic Oxidation , 2021, ACS Catalysis.

[9]  Y. Huh,et al.  Fluorine Engineered Self-Supported Ultrathin 2D Nickel Hydroxide Nanosheets as Highly Robust and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Urea Oxidation Reactions. , 2021, Small.

[10]  Hao Ming Chen,et al.  Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis , 2021, Nature Energy.

[11]  X. Lou,et al.  In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution , 2021, Science advances.

[12]  Min Gyu Kim,et al.  Discovering Ultrahigh-Loading of Single-Metal-Atom via Surface Tensile-Strain for Unprecedented Urea Electrolysis , 2021, Energy & Environmental Science.

[13]  Xuejing Yang,et al.  Deciphering and Suppressing the Over-oxidized Nitrogen in Nickel-catalyzed Urea Electrolysis. , 2021, Angewandte Chemie.

[14]  M. Jaroniec,et al.  Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst , 2021, Nature Energy.

[15]  Huisheng Peng,et al.  Regulating the local charge distribution of Ni active sites for urea oxidation reaction. , 2021, Angewandte Chemie.

[16]  Li Tao,et al.  Unveiling the electrooxidation of urea: the intramolecular coupling of N-N bond. , 2020, Angewandte Chemie.

[17]  P. Menezes,et al.  Facile Access to an Active γ‐NiOOH Electrocatalyst for Durable Water Oxidation Derived From an Intermetallic Nickel Germanide Precursor , 2020, Angewandte Chemie.

[18]  Changhong Wang,et al.  Unveiling the Promotion of Surface-Adsorbed Chalcogenate on the Electrocatalytic Oxygen Evolution Reaction. , 2020, Angewandte Chemie.

[19]  Xueping Qin,et al.  The pH-Dependent Hydrogen and Water Binding Energies on Platinum Surfaces as Directly Probed through Surface-Enhanced Infrared Absorption Spectroscopy. , 2020, Journal of the American Chemical Society.

[20]  Zhichuan J. Xu,et al.  A review on fundamentals for designing oxygen evolution electrocatalysts. , 2020, Chemical Society reviews.

[21]  R. Zou,et al.  Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. , 2020, Small.

[22]  Huisheng Peng,et al.  A Lattice‐Oxygen‐Involved Reaction Pathway to Boost Urea Oxidation , 2019, Angewandte Chemie.

[23]  Yushan Yan,et al.  Understanding the pH Dependence of Underpotential Deposited Hydrogen on Platinum. , 2019, Angewandte Chemie.

[24]  Jingguang G. Chen,et al.  Insight into the synergistic effect between nickel and tungsten carbide for catalyzing urea electrooxidation in alkaline electrolyte , 2018, Applied Catalysis B: Environmental.

[25]  G. Gnana kumar,et al.  3D Hierarchical Core–Shell Nanostructured Arrays on Carbon Fibers as Catalysts for Direct Urea Fuel Cells , 2018 .

[26]  Shaoming Huang,et al.  Highly efficient oxygen evolution from CoS2/CNT nanocomposites via a one-step electrochemical deposition and dissolution method. , 2017, Nanoscale.

[27]  W. Chu,et al.  Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells. , 2016, Angewandte Chemie.

[28]  William G. Hardin,et al.  Nanostructured LaNiO3 Perovskite Electrocatalyst for Enhanced Urea Oxidation , 2016 .

[29]  S. Qiao,et al.  Size Fractionation of Two-Dimensional Sub-Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. , 2016, Angewandte Chemie.

[30]  Xiuling Li,et al.  Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. , 2015, Journal of the American Chemical Society.

[31]  G. Botte,et al.  Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium , 2012 .

[32]  Fang Qian,et al.  Solar driven hydrogen releasing from urea and human urine , 2012 .

[33]  D. Sarma,et al.  Combined Raman and infrared investigation of the insulator-to-metal transition in NiS(2-x)Se(x) compounds , 2011 .

[34]  G. Botte,et al.  Dissociation rates of urea in the presence of NiOOH catalyst: a DFT analysis. , 2010, The journal of physical chemistry. A.

[35]  John T. S. Irvine,et al.  A direct urea fuel cell – power from fertiliser and waste , 2010 .

[36]  Gerardine G Botte,et al.  Urea electrolysis: direct hydrogen production from urine. , 2009, Chemical communications.

[37]  F. Jalilehvand Sulfur: not a "silent" element any more. , 2006, Chemical Society reviews.

[38]  A. Aldaz,et al.  Urea adsorption on Pt(111) electrodes , 1999 .

[39]  S. Wolfson,et al.  Anodic Oxidation of Urea and an Electrochemical Approach to De-ureation , 1973, Nature.

[40]  Dudley H. Williams The Infrared Spectrum of Potassium Cyanate Solutions , 1940 .

[41]  Bo‐Quan Li,et al.  An anionic regulation mechanism for structural reconstruction of sulfide electrocatalysts under oxygen evolution conditions , 2022, Energy & Environmental Science.

[42]  T. Fang,et al.  Understanding the high performance of PdSn-TaN(tantalum nitride)/C electrocatalysts for methanol oxidation reaction: coupling the nitrides and oxophilic elements , 2021, Journal of Materials Chemistry A.