Preservation of Polarimetric Properties Filtering for TSX Data Based on Barnes Decomposition

A new POLSAR speckle filtering approach is proposed to overcome the disadvantages of SMBF on polarimetric TSX data. Instead of Freeman-Durden decomposition, the new approach applies dichotomy decompositions (Barnes-Holm) to label each pixel by dominant scattering mechanism as single point target scattering or distributed target scattering. Then the unsupervised Wishart classification is applied to determine the adaptive neighborhood. Finally, only the “N-target” component is involved in the filtering step, while the pure single target component is preserved. By experiment on San Francisco multi-look TSX data, it is illustrated that the new method performs better than SMBF in pixel dominant scattering mechanism labeling and preservation of point target polarimetric properties.

[1]  Laurent Ferro-Famil,et al.  Unsupervised terrain classification preserving polarimetric scattering characteristics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[2]  William L. Cameron,et al.  Simulated polarimetric signatures of primitive geometrical shapes , 1996, IEEE Trans. Geosci. Remote. Sens..

[3]  Mingsheng Liao,et al.  Modification of a scattering model-based speckle filter applied to coastal environments: an LULC study using PALSAR data , 2010 .

[4]  Jian Yang,et al.  Three-Component Model-Based Decomposition for Polarimetric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[5]  W. Holm,et al.  On radar polarization mixed target state decomposition techniques , 1988, Proceedings of the 1988 IEEE National Radar Conference.

[6]  Wentao An,et al.  Nonlocal Filtering for Polarimetric SAR Data: A Pretest Approach , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[8]  Carlos López-Martínez,et al.  An evaluation of PolSAR speckle filters , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[9]  Torbjørn Eltoft,et al.  Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[10]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[11]  Thomas L. Ainsworth,et al.  The Effect of Orientation Angle Compensation on Coherency Matrix and Polarimetric Target Decompositions , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Irena Hajnsek,et al.  Potential of Estimating Soil Moisture Under Vegetation Cover by Means of PolSAR , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Hiroyoshi Yamada,et al.  Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix , 2011, IEEE Trans. Geosci. Remote. Sens..

[14]  Gabriel Vasile,et al.  Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Laurent Ferro-Famil,et al.  Scattering-model-based speckle filtering of polarimetric SAR data , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[17]  Guanghui Zhang,et al.  Correlation Coefficients Between Polarization Signatures for Evaluating Polarimetric Information Preservation , 2011, IEEE Geoscience and Remote Sensing Letters.