The Hohmann-Parker Effect Measured by the Mars Science Laboratory on the Transfer from Earth to Mars: Consequences and Opportunities

We show that a spacecraft launched from Earth towards Mars following a Hohmann minimum energy transfer trajectory has a strong tendency to remain well-connected magnetically to Earth, in the early phase of the transfer, or to Mars in the late phase, via the Parker spiral magnetic field. On the return trip, the spacecraft would remain reasonably well-connected magnetically first to Mars and later to Earth. Moreover, good magnetic connectivity occurs on all Hohmann transfers between neighboring planets in the inner solar system out to Mars. We call this hitherto unnamed circumstance the Hohmann–Parker effect. We show consequences of the effect by means of simultaneous cosmic radiation proxy observations made near Earth, near Mars, and at the Mars Science Laboratory on the transfer from Earth to Mars in 2011/2012. We support the observations with simulations of the large-scale magnetic field of the inner heliosphere during this period and compare the results with our predictions. The implications of the Hohmann–Parker effect are discussed. & 2013 Published by Elsevier Ltd.

[1]  E. Parker,et al.  Random walk of magnetic lines of force in astrophysics. , 1968 .

[2]  A. Balogh,et al.  Relationship between discontinuities, magnetic holes, magnetic decreases, and nonlinear Alfvén waves: Ulysses observations over the solar poles , 2002 .

[3]  A. Posner,et al.  Up to 1‐hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons , 2007 .

[4]  J. R. Jokipii COSMIC-RAY PROPAGATION. I. CHARGED PARTICLES IN A RANDOM MAGNETIC FIELD. , 1966 .

[5]  Peter MacNeice,et al.  Validation of community models: Identifying events in space weather model timelines , 2009 .

[6]  N. Schwadron An explanation for strongly underwound magnetic field in co‐rotating rarefaction regions and its relationship to footpoint motion on the the sun , 2002 .

[7]  M. Maggi,et al.  ASPERA-3: Analyser of space plasmas and energetic ions for mars express , 2004 .

[8]  R. MacQueen,et al.  Mass ejections from the Sun: A view from Skylab , 1974 .

[9]  G. Reitz,et al.  The Radiation Assessment Detector (RAD) Investigation , 2012 .

[10]  L. Davis,et al.  Steady Component of the Interplanetary Magnetic Field: Pioneer V , 1960 .

[11]  M. Maggi,et al.  The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission , 2007 .

[12]  C. Barnes,et al.  Evidence for interplanetary acceleration of nucleons in corotating interaction regions , 1976 .

[13]  L. Burlaga,et al.  Cosmic ray modulation - Voyager 2 observations, 1987-1988 , 1991 .

[14]  Martin P. Ward,et al.  The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite , 2004 .

[15]  U. R. Rao COSMIC RAY MODULATION. , 1967 .

[16]  L. Burlaga,et al.  Spacecraft studies of the interplanetary magnetic field , 2001 .

[17]  N. Sheeley,et al.  Understanding the rotation of coronal holes , 1993 .

[18]  M. Temmer,et al.  Interaction of a Moreton/EIT Wave and a Coronal Hole , 2006, astro-ph/0604613.

[19]  N. Murphy,et al.  Strongly underwound magnetic fields in co‐rotating rarefaction regions: Observations and Implications , 2002 .

[20]  J. Geiss,et al.  Origin of the solar wind from composition data , 1995 .

[21]  H. Sierks,et al.  High energy cosmic-ray nuclei results on Ulysses: 2. Effects of a recurrent high-speed stream from the southern polar coronal hole , 1995 .

[22]  S. Krimigis,et al.  No meridional plasma flow in the heliosheath transition region , 2012, Nature.

[23]  J. Jokipii,et al.  Corotating Variations of Cosmic Rays Near the South Heliospheric Pole , 1995, Science.

[24]  R. Leske,et al.  The High Energy Telescope for STEREO , 2008 .

[25]  Dusan Odstrcil,et al.  Numerical simulation of the 12 May 1997 interplanetary CME event , 2004 .

[26]  S. Forbush On the Effects in Cosmic-Ray Intensity Observed During the Recent Magnetic Storm , 1937 .

[27]  W. R. Cook,et al.  STEREO IMPACT Investigation Goals, Measurements, and Data Products Overview , 2008 .

[28]  J. Simpson,et al.  Ulysses out-of-ecliptic observations of “27-day” variations in high energy cosmic ray intensity , 1995 .

[29]  D. Hassler,et al.  A high energy telescope for the Solar Orbiter , 2004 .

[30]  E. Roelof,et al.  Large-scale structure of the interplanetary medium , 1973 .

[31]  Statistical study of coronal mass ejection source locations: 2. Role of active regions in CME production , 2011 .

[32]  Agustin Chicarro,et al.  Mars express : the scientific payload , 2004 .

[33]  I. Richardson,et al.  Corotating MeV/amu ion enhancements at ≤1 AU from 1978 to 1986 , 1993 .

[34]  M. Alania,et al.  Three dimensional model of the interplanetary magnetic field and 27-day variation of the galactic cosmic ray intensity , 2011 .

[35]  David J. McComas,et al.  Ulysses' return to the slow solar wind , 1998 .

[36]  Ming Zhang A Linear Relationship between the Latitude Gradient and 26 Day Recurrent Variation in the Fluxes of Galactic Cosmic Rays and Anomalous Nuclear Components. I. Observations , 1997 .

[37]  D. Meziat,et al.  COSTEP - Comprehensive Suprathermal and Energetic Particle Analyser , 1995 .

[38]  B. Heber,et al.  Amplitude evolution and rigidity dependence of the 26-day recurrent cosmic ray decreases : COSPIN/KET results , 1999 .

[39]  D. Mitchell,et al.  Evaluating predictions of ICME arrival at Earth and Mars , 2011 .

[40]  D. Odstrcil,et al.  Distortion of the interplanetary magnetic field by three‐dimensional propagation of coronal mass ejections in a structured solar wind , 1999 .

[41]  B. Heber,et al.  Observations of recurrent cosmic ray decreases during solar cycles 22 and 23 , 2008 .

[42]  I. Richardson,et al.  The relationship between recurring cosmic ray depressions and corotating solar wind streams at ≤1 AU: IMP 8 and Helios 1 and 2 anticoincidence guard rate observations , 1996 .

[43]  K. Brunstein Measurement of low-energy cosmic-ray protons. , 1964 .

[44]  Conway W. Snyder,et al.  MARINER 2 OBSERVATIONS OF THE SOLAR WIND. 1. AVERAGE PROPERTIES , 1966 .

[45]  S. Forbush World‐wide cosmic ray variations, 1937–1952 , 1954 .

[46]  S. Glenn,et al.  Observations of recurrent mesoscale eddies in the eastern Mediterranean , 1996 .

[47]  E. Smith,et al.  Fields and plasmas in the outer solar system , 1979 .

[48]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[49]  L. Fisk Motion of the footpoints of heliospheric magnetic field lines at the Sun : Implications for recurrent energetic particle events at high heliographic latitudes , 1996 .

[50]  J. Jokipii,et al.  3-D modeling of cosmic-ray transport in the heliosphere: toward solar maximum , 2001 .

[51]  R. Goddard A Method of Reaching Extreme Altitudes. , 1920, Nature.

[52]  R. Gold,et al.  High coronal structure of high velocity solar wind stream sources , 1977 .

[53]  P. Démoulin A review of the quantitative links between CMEs and magnetic clouds , 2008 .

[54]  I. Richardson,et al.  Corotating MeV/amu ion enhancements at 1 AU or less from 1978 to 1986 , 1993 .

[55]  H. Cane Coronal Mass Ejections and Forbush Decreases , 2000 .

[56]  L. Fisk,et al.  Mechanisms for Latitudinal Transport of Energetic Particles in the Heliosphere , 1999 .

[57]  J. Zirker Coronal holes and high‐speed wind streams , 1977 .

[58]  M. Owens,et al.  The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind , 2011 .

[59]  V. Pizzo A three-dimensional model of corotating streams in the solar wind. 1: Theoretical foundations , 1978 .

[60]  M. Maggi,et al.  The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission , 2006 .

[61]  J. Linker,et al.  Nature of the boundary between open and closed magnetic field line regions at the Sun revealed by composition data and numerical models , 2001 .

[62]  Premkumar B. Saganti,et al.  Mars Odyssey measurements of galactic cosmic rays and solar particles in Mars orbit, 2002–2008 , 2010 .

[63]  Marlon Núñez,et al.  Predicting solar energetic proton events (E > 10 MeV) , 2011 .

[64]  M. Samokhin Origin of the Solar Wind , 1967 .

[65]  V. Pizzo A three-dimensional model of co-rotating streams in the solar wind. 2: Hydrodynamic streams , 1979 .

[66]  R. Trautner,et al.  The Mars Express mission: an overview , 2004 .

[67]  B. Bonner,et al.  High energy , 1989 .

[68]  P. MacNeice,et al.  Validation of community models: 3. Tracing field lines in heliospheric models , 2011 .

[69]  B. Heber,et al.  POSSIBLE EVIDENCE FOR A FISK-TYPE HELIOSPHERIC MAGNETIC FIELD. I. ANALYZING ULYSSES/KET ELECTRON OBSERVATIONS , 2011 .

[70]  L. Dorman Cosmic ray modulation , 1991 .

[71]  J. Wilcox,et al.  On the Solar Origin of the Interplanetary Magnetic Field , 1964 .

[72]  E. Roelof,et al.  A coronal hole and its identification as the source of a high velocity solar wind stream , 1973 .

[73]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[74]  Peter MacNeice,et al.  Validation of community models: 2. Development of a baseline using the Wang‐Sheeley‐Arge model , 2009 .

[75]  T. Gombosi,et al.  Numerical simulation of the 12 May 1997 CME Event: The role of magnetic reconnection , 2010, 1006.4337.