The Category-Theoretic Solution of Recursive Domain Equations (Extended Abstract)

The solution of a recursive domain equation, of the form D ~= F(D) may be viewed as the finding of a fixpoint (up to isomorphism) of the functor F. This has led to the idea of formulating a category-theoretic analogue of Tarski's fixpoint theorem for lattices, as a basis for a general method of solution for this kind of equation; see especially Reynolds [1], Wand [2], Plotkin [3].

[1]  Mitchell Wand,et al.  On the recursive specification of data types , 1974, Category Theory Applied to Computation and Control.

[2]  William H. Burge,et al.  Recursive Programming Techniques , 1975 .

[3]  Daniel J. Lehmann,et al.  Data types , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[4]  Robert L. Constable,et al.  Computability Concepts for Programming Language Semantics , 1976, Theor. Comput. Sci..

[5]  M. Arbib,et al.  Arrows, Structures, and Functors: The Categorical Imperative , 1975 .

[6]  Robert D. Tennent,et al.  The denotational semantics of programming languages , 1976, CACM.

[7]  Christopher P. Wadsworth,et al.  The Relation Between Computational and Denotational Properties for Scott's Dinfty-Models of the Lambda-Calculus , 1976, SIAM J. Comput..

[8]  G. Plotkin Tω as a Universal Domain , 1978 .

[9]  Gordon D. Plotkin,et al.  A Powerdomain Construction , 1976, SIAM J. Comput..

[10]  Gordon D. Plotkin,et al.  The category-theoretic solution of recursive domain equations , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[11]  Michael J. C. Gordon,et al.  Towards a semantic theory of dynamic binding. , 1975 .

[12]  STEPHrN L. BLOOM,et al.  Varieties of Ordered Algebras , 1976, J. Comput. Syst. Sci..

[13]  G. Markowsky,et al.  Bases for chain-complete posets , 1976 .

[14]  G. Markowsky Chain-complete posets and directed sets with applications , 1976 .

[15]  Michael A. Arbib,et al.  Free Dynamic and Algebraic Semantics , 1977, FCT.

[16]  Michael B. Smyth,et al.  Effectively given Domains , 1977, Theor. Comput. Sci..

[17]  John C. Reynolds,et al.  On the Relation between Direct and Continuation Semantics , 1974, ICALP.

[18]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..