Milnor-Witt $K$-groups of local rings

[1]  I. Panin,et al.  Rationally isotropic quadratic spaces are locally isotropic. III , 2016 .

[2]  A. Neshitov FRAMED CORRESPONDENCES AND THE MILNOR–WITT $K$ -THEORY , 2014, Journal of the Institute of Mathematics of Jussieu.

[3]  M. Schlichting Euler class groups, and the homology of elementary and special linear groups , 2015, 1502.05424.

[4]  J. Fasel,et al.  Splitting vector bundles outside the stable range and A^1-homotopy sheaves of punctured affine spaces , 2012, 1209.5631.

[5]  F. Morel A1-Algebraic Topology over a Field , 2012 .

[6]  M. Kerz Milnor -theory of local rings with finite residue fields , 2010 .

[7]  I. Panin Rationally isotropic quadratic spaces are locally isotropic , 2009 .

[8]  Kevin Hutchinson,et al.  Homology Stability for the Special Linear Group of a Field and MilnorWitt $K$-theory , 2008, Irish Mathematical Society Bulletin.

[9]  M. Kerz The Gersten conjecture for Milnor K-theory , 2008 .

[10]  Jeanne Fasel Groupes de Chow-Witt , 2008 .

[11]  J. Fasel The Chow-Witt ring , 2007, Documenta Mathematica.

[12]  S. Muller-Stach,et al.  The Milnor–Chow homomorphism revisited , 2006, math/0601175.

[13]  J. Milnor Algebraic K-Theory and Quadratic Forms , 2005 .

[14]  F. Morel Sur les puissances de l’idéal fondamental de l’anneau de Witt , 2004 .

[15]  Tsit Yuen Lam,et al.  Introduction To Quadratic Forms Over Fields , 2004 .

[16]  F. Morel On the Motivic π0 of the Sphere Spectrum , 2004 .

[17]  Vladimir Voevodsky,et al.  Motivic cohomology with Z/2-coefficients , 2003 .

[18]  I. Panin,et al.  The Gersten conjecture for Witt groups in the equicharacteristic case , 2002, Documenta Mathematica.

[19]  C. Walter,et al.  A Gersten–Witt spectral sequence for regular schemes , 2002 .

[20]  R. Elman,et al.  Powers of the Fundamental Ideal in the Witt Ring , 2001 .

[21]  Paul Balmer Witt Cohomology, Mayer–Vietoris, Homotopy Invariance and the Gersten Conjecture , 2001 .

[22]  Vladimir Voevodsky,et al.  An exact sequence for $K_\ast^M/2$ with applications to quadratic forms , 2001, math/0101023.

[23]  J. Barge,et al.  Groupe de Chow des cycles orientés et classe d'Euler des fibrés vectoriels , 2000 .

[24]  J. Barge,et al.  Cohomologie des groupes linéaires, K-théorie de Milnor et groupes de Witt , 1999 .

[25]  M. Kolster On torsion in K>2 of fields , 1991 .

[26]  A. Suslin,et al.  HOMOLOGY OF THE FULL LINEAR GROUP OVER A LOCAL RING, AND MILNOR'S K-THEORY , 1990 .

[27]  M. Carral,et al.  Quadratic and λ-hermitian forms , 1989 .

[28]  A. Suslin Torsion in K2 of fields , 1987 .

[29]  J. Arason Der wittring projektiver Räume , 1980 .

[30]  Manfred Knebusch,et al.  Symmetric bilinear forms over algebraic varieties , 1977 .

[31]  J. Arason Cohomologische invarianten quadratischer Formen , 1975 .

[32]  T. Lam,et al.  Pfister forms and K-theory of fields , 1972 .

[33]  E. Witt,et al.  Theorie der quadratischen Formen in beliebigen Körpern. , 1937 .