Automatic thresholding of SIFT descriptors
暂无分享,去创建一个
[1] Jean-Michel Morel,et al. From Gestalt Theory to Image Analysis: A Probabilistic Approach , 2007 .
[2] Michel Couprie,et al. Building the Component Tree in Quasi-Linear Time , 2006, IEEE Transactions on Image Processing.
[3] E. Slud. Distribution Inequalities for the Binomial Law , 1977 .
[4] Julien Rabin,et al. A Statistical Approach to the Matching of Local Features , 2009, SIAM J. Imaging Sci..
[5] Cordelia Schmid,et al. Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.
[6] Thomas Brox,et al. Descriptor Matching with Convolutional Neural Networks: a Comparison to SIFT , 2014, ArXiv.
[7] Julie Delon,et al. A Nonparametric Approach for Histogram Segmentation , 2007, IEEE Transactions on Image Processing.
[8] A. Tamhane,et al. Multiple Comparison Procedures , 1989 .
[9] Rafael Grompone von Gioi,et al. LSD: A Fast Line Segment Detector with a False Detection Control , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[10] Ives Rey-Otero,et al. Anatomy of the SIFT Method , 2014, Image Process. Line.
[11] Cordelia Schmid,et al. A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[12] G LoweDavid,et al. Distinctive Image Features from Scale-Invariant Keypoints , 2004 .
[13] Stefano Soatto,et al. Domain-size pooling in local descriptors: DSP-SIFT , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[14] Emmanuel Bertin,et al. Effective Component Tree Computation with Application to Pattern Recognition in Astronomical Imaging , 2007, 2007 IEEE International Conference on Image Processing.
[15] Cordelia Schmid,et al. A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.
[16] Jean-Michel Morel,et al. Computational gestalts and perception thresholds , 2003, Journal of Physiology-Paris.
[17] Arjuna Flenner,et al. A Helmholtz Principle Approach to Parameter Free Change Detection and Coherent Motion Using Exchangeable Random Variables , 2011, SIAM J. Imaging Sci..
[18] Julien Rabin. Approches robustes pour la comparaison d'images et la reconnaissance d'objets , 2009 .
[19] Agnès Desolneux,et al. Vanishing Point Detection without Any A Priori Information , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[20] Lionel Moisan,et al. Meaningful Alignments , 2000, International Journal of Computer Vision.
[21] Rafael Grompone von Gioi,et al. On computational Gestalt detection thresholds , 2009, Journal of Physiology-Paris.
[22] Andrea Vedaldi,et al. Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.
[23] Jean-Michel Morel,et al. A Theory of Shape Identification , 2008 .
[24] Luc Van Gool,et al. The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.
[25] Jiri Matas,et al. Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..
[26] Christopher Hunt,et al. Notes on the OpenSURF Library , 2009 .
[27] Wolfgang Förstner,et al. Detecting interpretable and accurate scale-invariant keypoints , 2009, 2009 IEEE 12th International Conference on Computer Vision.
[28] Jiri Matas,et al. Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..
[29] Lionel Moisan,et al. Edge Detection by Helmholtz Principle , 2001, Journal of Mathematical Imaging and Vision.
[30] Charles Kenney,et al. Two dimensional histogram analysis using the Helmholtz principle , 2008 .
[31] H. Keselman,et al. Multiple Comparison Procedures , 2005 .
[32] Yan Ke,et al. PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..