On the FEM treatment of wedge singularities in waveguide problems

In modern micro- and millimeter wave technology, there exist many different devices based on microstrip lines. These include coplanar waveguides, patch antennas, filters, power dividers, directional couplers etc. In this work, a simple and computationally advantageous extension to a standard 2D polynomial finite element basis is introduced to cope with wedge singularities in uniform cylindrical structures. To enhance the computation, variable-order elements are used.

[1]  K. Preis,et al.  Nodal and edge element analysis of inhomogeneously loaded waveguides , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[2]  Jin-Fa Lee,et al.  Tangential vector finite elements for electromagnetic field computation , 1991 .

[3]  J. Van Bladel,et al.  Field singularities at the tip of a metallic cone of arbitrary cross section , 1986 .

[4]  Andrew F. Peterson,et al.  Vector finite element formulation for scattering from two-dimensional heterogeneous bodies , 1994 .

[5]  D. M. Tracey,et al.  Analysis of power type singularities using finite elements , 1977 .

[6]  Raj Mittra,et al.  Quasi-TEM Analysis of Microwave Transmission Lines by the Finite-Element Method , 1986 .

[7]  Jian-Ming Jin,et al.  Computation of cavity resonances using edge-based finite elements , 1992 .

[8]  V. Postoyalko,et al.  Green's Function Treatment of Edge Singularities in the Quasi-TEM Analysis of Microstrip , 1986 .

[9]  G. Mur The Modeling of Singularities in the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981 .

[10]  K. D. Paulsen,et al.  Accurate solutions of Maxwell's equations around PEC corners and highly curved surfaces using nodal finite elements , 1997 .

[11]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[12]  G. Mur,et al.  The finite-element modeling of three-dimensional electromagnetic fields using edge and nodal elements , 1993 .

[13]  Peter P. Silvester,et al.  Finite elements for electrical engineers: Finite Elements for Electrical Engineers , 1996 .

[14]  J. Akin Application and Implementation of Finite Element Methods , 1982 .

[15]  Jørgen Bach Andersen,et al.  Field behavior near a dielectric wedge , 1978 .

[16]  K. Whiting,et al.  A Treatment for Boundary Singularities in Finite Difference Solutions of Laplace's Equation (Correspondence) , 1968 .

[17]  Jin-Fa Lee,et al.  Full-wave analysis of dielectric waveguides using tangential vector finite elements , 1991 .

[18]  J. Van Bladel,et al.  Field singularities at metal-dielectric wedges , 1985 .

[19]  D. Pozar Microwave Engineering , 1990 .

[20]  I. J. Bahl,et al.  Microstrip Antennas , 1980 .

[21]  M. Mrozowski,et al.  A conductive wedge in Yee's mesh , 1998, IEEE Microwave and Guided Wave Letters.

[22]  Z. Cendes Vector finite elements for electromagnetic field computation , 1991 .

[23]  J. Zapata,et al.  Efficient singular element for finite element analysis of quasi-TEM transmission lines and waveguides with sharp metal edges , 1994 .

[24]  J. Zapata,et al.  A new scalar transition finite element for accurate analysis of waveguides with field singularities , 1995 .

[25]  Keith D. Paulsen,et al.  Origin of vector parasites in numerical Maxwell solutions , 1991 .

[26]  Raj Mittra,et al.  Study of modal solution procedures for microstrip step discontinuities , 1989 .

[27]  Jon P. Webb,et al.  Finite element analysis of dispersion in waveguides with sharp metal edges , 1988, 1988., IEEE MTT-S International Microwave Symposium Digest.

[28]  Jon P. Webb,et al.  A new edge element for the modeling of field singularities in transmission lines and waveguides , 1997 .

[29]  Madhavan Swaminathan,et al.  Computation of cutoff wavenumbers of TE and TM modes in waveguides of arbitrary cross sections using a surface integral formulation , 1990 .

[30]  Derek B. Ingham,et al.  Boundary Integral Equation Analysis of Transmission-Line Singularities , 1981 .

[31]  W. E. Boyse,et al.  A hybrid finite element method for 3-D scattering using nodal and edge elements , 1994, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting.

[32]  J. S. Savage,et al.  Two-dimensional singular vector elements for finite-element analysis , 1998 .

[33]  J.N. Sahalos,et al.  Fields at the tip of an elliptic cone , 1984, Proceedings of the IEEE.