A DFT study on Cu(I) coordination in Cu‐ZSM‐5: Effects of the functional choice and tuning of the ONIOM approach

The coordination of Cu+ at the T1 and T7 positions of the M7 ring of Cu‐ZSM‐5, and the interaction of NO with coordinated Cu+ were investigated by means of DFT/ONIOM calculations. The B3LYP, BLYP, PBE1PBE, PBE, M06, and M062X functionals with the def2‐TZVP (def2‐QZVP for Cu) basis set were used in the high‐level part of ONIOM calculations, with the HF/3‐21G, B3LYP/LANL2DZ, M06/LANL2DZ, and M062X/LANL2DZ methods in the low‐level part. The ability of suitable combinations of the above methods to reproduce (i) the crystallographic structure of purely siliceous ZSM‐5, (ii) the tendency of Cu+ to be twofold or fourfold coordinated by framework oxygen atoms of Cu‐ZSM‐5, and (iii) the interaction energy and the NO stretching frequency of adsorbed nitrogen oxide are discussed, showing that different results are obtained depending on the adopted computational approach. With reference to above properties, some considerations about the employment of the ONIOM approximations are also included. © 2015 Wiley Periodicals, Inc.

[1]  H. Koningsveld High-temperature (350 K) orthorhombic framework structure of zeolite H-ZSM-5 , 1990 .

[2]  E. Broclawik,et al.  Cobalt cationic sites in ferrierites : QM/MM modeling , 2008 .

[3]  M. Delgado,et al.  Computational and Fourier Transform Infrared Spectroscopic Studies on Carbon Monoxide Adsorption on the Zeolites Na-ZSM-5 and K-ZSM-5: Evidence of Dual-Cation Sites , 2008 .

[4]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[5]  K. Morokuma,et al.  A NEW ONIOM IMPLEMENTATION IN GAUSSIAN98. PART I. THE CALCULATION OF ENERGIES, GRADIENTS, VIBRATIONAL FREQUENCIES AND ELECTRIC FIELD DERIVATIVES , 1999 .

[6]  Bernard Delmon,et al.  Catalytic removal of NO , 1998 .

[7]  M. Sierka,et al.  Coordination and siting of Cu+ ions in ZSM-5: A combined quantum mechanics/interatomic potential function study , 1999 .

[8]  Toshinori Mori,et al.  A New Strategy for the Improvement of the N2 Adsorption Properties of Copper-Ion-Exchanged MFI-Type Zeolites at Room Temperature , 2007 .

[9]  J. B. Adams,et al.  Cu−Dinitrosyl Species in Zeolites: A Density Functional Molecular Cluster Study , 1997 .

[10]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[11]  G. Moretti,et al.  The catalytic activity of Cu-ZSM-5 and Cu-Y zeolites in NO decomposition: dependence on copper concentration , 1994 .

[12]  A. Bell,et al.  An Infrared Study of NO Decomposition over Cu-ZSM-5 , 1995 .

[13]  J. B. Adams,et al.  Theoretical Analysis of N2O to N2 Conversion During the Catalytic Decomposition of NO by Cu-Zeolites , 2001 .

[14]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[15]  Marek Sierka,et al.  Structure and reactivity of silica and zeolite catalysts by a combined quantum mechanics[ndash ]shell-model potential approach based on DFT , 1997 .

[16]  D. Nachtigallová,et al.  Nature of the Cu+-NO bond in the gas phase and at different types of Cu+ sites in zeolite catalysts , 2004 .

[17]  R. A. Santen,et al.  Stability of extraframework iron-containing complexes in ZSM-5 zeolite , 2013 .

[18]  K. Morokuma,et al.  On the application of the IMOMO (integrated molecular orbital + molecular orbital) method , 2000 .

[19]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[20]  T. Bučko,et al.  Theoretical investigation of CO interaction with copper sites in zeolites: periodic DFT and hybrid quantum mechanical/interatomic potential function study. , 2005, The journal of physical chemistry. B.

[21]  P. Nachtigall,et al.  Theoretical investigation of dinitrosyl complexes in Cu-zeolites as intermediates in deNOx process. , 2009, Physical chemistry chemical physics : PCCP.

[22]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[23]  C. Arean,et al.  Hydrogen adsorption on the zeolite Ca-A: DFT and FT-IR investigation , 2009 .

[24]  G. Spoto,et al.  Formation of CuI—N2 adducts at 298 and 77 K in CuI-ZSM-5: an FTIR investigation , 1995 .

[25]  R. Ramprasad,et al.  Cluster Models of Cu Binding and CO and NO Adsorption in Cu-Exchanged Zeolites , 1996 .

[26]  D. Nachtigallová,et al.  Coordination of Cu+ and Cu2+ ions in ZSM-5 in the vicinity of two framework Al atoms , 2001 .

[27]  K. Irikura Experimental Vibrational Zero-Point Energies: Diatomic Molecules , 2007 .

[28]  D. Nachtigallová,et al.  Interaction of small molecules with transition metal ions in zeolites: The effect of the local environment , 2002 .

[29]  F. Buda,et al.  STRUCTURAL AND ELECTRONIC PROPERTIES OF SODALITE : AN AB INITIO MOLECULAR DYNAMICS STUDY , 1995 .

[30]  Alexis T. Bell,et al.  Experimental and theoretical studies of NO decomposition and reduction over metal-exchanged ZSM-5 , 1997 .

[31]  W. Schneider,et al.  Reliability of Small Cluster Models for Cu-Exchanged Zeolites , 1996 .

[32]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[33]  M. Iwamoto,et al.  Removal of nitrogen monoxide from exhaust gases through novel catalytic processes , 1991 .

[34]  R. Bulánek,et al.  Localization and Coordination of Mg2+ Cations in Ferrierite: Combined FTIR Spectroscopic and Computation Investigation of CO Adsorption Complexes , 2009 .

[35]  K. Hass,et al.  Density functional studies of adsorbates in Cu-exchanged zeolites: model comparisons and SOx binding , 1999 .

[36]  Jonas Boström,et al.  Analytical Gradients of Hartree-Fock Exchange with Density Fitting Approximations. , 2013, Journal of chemical theory and computation.

[37]  M. Iwamoto,et al.  Characterization of Cuprous Ion in High Silica Zeolites and Reaction Mechanisms of Catalytic NO Decomposition and Specific N2 Adsorption , 2004 .

[38]  D. Nachtigallová,et al.  Localization of Cu+ sites and framework Al positions in high-silica zeolites: Combined experimental and theoretical study , 2004 .

[39]  R. A. Santen,et al.  A DFT Study of Direct Oxidation of Benzene to Phenol by N2O over [Fe(μ-O)Fe]2+ Complexes in ZSM-5 Zeolite , 2011 .

[40]  R. Bulánek,et al.  Theoretical investigation of site-specific characteristics of CO adsorption complexes in the Li+-FER zeolite , 2006 .

[41]  M. Shelef Selective Catalytic Reduction of NOx with N-Free Reductants , 1995 .

[42]  Xin Xu,et al.  Exploring the Sodium Cation Location and Aluminum Distribution in ZSM-5: A Systematic Study by the Extended ONIOM (XO) Method , 2011 .

[43]  G. Moretti,et al.  Dinitrogen Irreversible Adsorption on Overexchanged Cu-ZSM-5 , 2002 .

[44]  B. Sels,et al.  The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2, NO and H2O on recombination of oxygen , 2008 .

[45]  W. Sachtler,et al.  Redox Chemistry of Cu/ZSM-5 , 1996 .

[46]  James B. Adams,et al.  Theoretical analysis of oxygen-bridged Cu pairs in Cu-exchanged zeolites , 1998 .

[47]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[48]  Joseph E. Subotnik,et al.  Linear scaling density fitting. , 2006, The Journal of chemical physics.

[49]  W. Hall,et al.  Catalytic decomposition of nitric oxide over Cu-zeolites , 1991 .

[50]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[51]  A. Auroux,et al.  Characterization of copper-exchanged ZSM-5 and ETS-10 catalysts with low and high degrees of exchange , 2000 .

[52]  Joachim Sauer,et al.  Combining quantum mechanics and interatomic potential functions in ab initio studies of extended systems , 2000 .

[53]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[54]  M. Sierka,et al.  Coordination of Cu+ Ions to Zeolite Frameworks Strongly Enhances Their Ability To Bind NO2. An ab Initio Density Functional Study , 1998 .

[55]  Shuichi Kagawa,et al.  Catalytic decomposition of nitric oxide over copper(II)-exchanged, Y-type zeolites , 1981 .

[56]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[57]  P. Costa,et al.  Transient Studies of Oxygen Removal Pathways and Catalytic Redox Cycles during NO Decomposition on Cu−ZSM5 , 2002 .

[58]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[59]  Theoretical study of CO and NO vibrational frequencies in Cu-water clusters and implications for Cu-exchanged zeolites , 1997 .

[60]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[61]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[62]  D. Nachtigallová,et al.  Combined Experimental and Theoretical Investigations of Heterogeneous Dual Cation Sites in Cu,M-FER Zeolites , 2011 .

[63]  G. Moretti,et al.  Basis set effects on Cu(I) coordination in Cu-ZSM-5: a computational study , 2012, Theoretical Chemistry Accounts.

[64]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[65]  D. Nachtigallová,et al.  On the existence of CuI pairs in ZSM-5--a computational study. , 2002, Chemistry.

[66]  S. Papson “Model” , 1981 .

[67]  J. Čejka,et al.  Combined volumetric, infrared spectroscopic and theoretical investigation of CO2 adsorption on Na-A zeolite , 2011 .

[68]  Toshinori Mori,et al.  New information related to the adsorption model of N2 on cuMFI at room temperature , 2007 .

[69]  G. Rauhut,et al.  Adsorption of dioxygen to copper in CuHY zeolite. , 2009, Physical chemistry chemical physics : PCCP.

[70]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[71]  F. Weigend,et al.  Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr , 2003 .

[72]  K. Hirao,et al.  A theoretical study on the catalysis of Cu-exchanged zeolite for the decomposition of nitric oxide , 1999 .

[73]  Theoretical study of the structure and properties of Na-MOR and H-MOR zeolite models. , 2007 .

[74]  E. Broclawik,et al.  DFT quantum chemical modeling of the interaction of alkenes with Cu+ sites in zeolites , 2006 .

[75]  P. Costa,et al.  Kinetics and Mechanism of Steady-State Catalytic NO Decomposition Reactions on Cu–ZSM5 , 2002 .

[76]  D. Nachtigallová,et al.  Coordination Change of Cu+Sites in ZSM-5 on Excitation in the Triplet State: Understanding of the Photoluminescence Spectra , 2000 .

[77]  A. Sierraalta,et al.  Density functional study of the interaction of Cu+ ion-exchanged zeolites with H2O and SO2 molecules , 2005 .

[78]  M. D. Amiridis,et al.  DRIFTS evidence for the formation of binuclear Cu(I)–dinitrogen complexes upon adsorption of N2 on CuZSM-5 , 2006 .

[79]  A. Bell,et al.  Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2:DFT study. , 2010, Journal of the American Chemical Society.

[80]  P. Costa,et al.  Spectroscopic and chemical characterization of active and inactive Cu species in NO decomposition catalysts based on Cu-ZSM5 , 2002 .

[81]  F. Garin Mechanism of NOx decomposition , 2001 .

[82]  Petr Nachtigall,et al.  Experimental and theoretical determination of adsorption heats of CO(2) over alkali metal exchanged ferrierites with different Si/Al ratio. , 2010, Physical chemistry chemical physics : PCCP.

[83]  G. Moretti,et al.  Dimeric Cu(I) species in Cu-ZSM-5 catalysts: the active sites for the NO decomposition , 2005 .

[84]  M. Jacono,et al.  Zeolite Chemistry of CuZSM-5 Revisited , 1997 .

[85]  R. A. Santen,et al.  Oxidation of Benzene to Phenol by N2O on an Fe2+-ZSM-5 Cluster: A Density Functional Theory Study , 2009 .

[86]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[87]  J. Valyon,et al.  On the preparation and properties of CuZSM-5 catalysts for NO decomposition , 1993 .

[88]  A. Sierraalta,et al.  Direct catalytic decomposition of NO with Cu–ZSM-5: A DFT–ONIOM study , 2011 .

[89]  A. Sierraalta,et al.  Nitrogen oxides and SO2 adsorption on Au/MOR catalyst: Adsorption sites, thermodynamic and vibrational frequencies. ONIOM study , 2012 .

[90]  Feliu Maseras,et al.  IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states , 1995, J. Comput. Chem..

[91]  M. Delgado,et al.  Combined DFT/CC and IR spectroscopic studies on carbon dioxide adsorption on the zeolite H-FER , 2009 .

[92]  M. Iwamoto,et al.  Copper(II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide , 1986 .

[93]  M. Sodupe,et al.  Spin-forbidden N2O dissociation in Cu–ZSM-5 , 2003 .

[94]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[95]  J. Limtrakul,et al.  Skeletal Isomerization of 1-Butene over Ferrierite Zeolite: A Quantum Chemical Analysis of Structures and Reaction Mechanisms , 2012 .

[96]  A. Bell,et al.  Density Functional Theory Study of CO Adsorption on Cu(I)-ZSM-5 , 2007 .

[97]  G. Schaftenaar,et al.  Molden: a pre- and post-processing program for molecular and electronic structures* , 2000, J. Comput. Aided Mol. Des..

[98]  Alexis T. Bell,et al.  Local Spin Density Functional Theory Study of Copper Ion-Exchanged ZSM-5 , 1996 .

[99]  R. Gomperts,et al.  Interaction of CO molecule with Au/MOR catalyst: ONIOM-PM6 study, active sites, thermodynamic and vibrational frequencies. , 2010, Journal of Physical Chemistry A.

[100]  K. Góra-Marek,et al.  Nitrogen Monoxide Interaction with Cu(I) Sites in Zeolites X and Y : Quantum Chemical Calculations and IR Studies , 2008 .

[101]  D. Nachtigallová,et al.  Interaction of acetonitrile with Na-zeolites: adsorption modes and vibrational dynamics in the zeolite channels and cavities. , 2008, Physical chemistry chemical physics : PCCP.

[102]  T. Helgaker,et al.  Variational and robust density fitting of four-center two-electron integrals in local metrics. , 2008, The Journal of chemical physics.

[103]  B. Weckhuysen,et al.  Bis(μ-oxo)dicopper in Cu-ZSM-5 and Its Role in the Decomposition of NO: A Combined in Situ XAFS, UV−Vis−Near-IR, and Kinetic Study , 2003 .

[104]  Joachim Sauer,et al.  Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. , 2009, Physical chemistry chemical physics : PCCP.

[105]  G. Moretti Turnover frequency for NO decomposition over Cu-ZSM-5 catalysts: insight into the reaction mechanism , 1994 .

[106]  J. B. Adams,et al.  First-principles analysis of elementary steps in the catalytic decomposition of NO by Cu-exchanged zeolites , 1997 .

[107]  W. Sachtler,et al.  Identification of copper(II) and copper(I) and their interconversion in Cu/ZSM-5 De-NOx catalysts , 1995 .

[108]  M. Sierka,et al.  Theoretical studies of Cu(I) sites in faujasite and their interaction with carbon monoxide. , 2007, Physical chemistry chemical physics : PCCP.

[109]  D. Nachtigallová,et al.  Characterization of the Cu+ sites in high-silica zeolites interacting with the CO molecule: Combined computational and experimental study , 2003 .

[110]  D. Nachtigallová,et al.  Calculations of Site-Specific CO Stretching Frequencies for Copper Carbonyls with the ``Near Spectroscopic Accuracy'': CO Interaction with Cu+/MFI , 2003 .

[111]  M. Sodupe,et al.  Adsorption of NH(3) and H(2)O in acidic chabazite. Comparison of ONIOM approach with periodic calculations. , 2005, The journal of physical chemistry. B.

[112]  Keiji Morokuma,et al.  Energetics using the single point IMOMO (integrated molecular orbital+molecular orbital) calculations: Choices of computational levels and model system , 1996 .

[113]  P. Ugliengo,et al.  Modeling physisorption with the ONIOM method: the case of NH3 at the isolated hydroxyl group of the silica surface , 2001 .