Hilbert transform: Applications to atomic spectra

In many areas of physics, the Kramers-Kronig relations are used to extract information about the real part of the optical response of a medium from its imaginary counterpart. In this paper we discuss an alternative but mathematically equivalent approach based on the Hilbert transform. We apply the Hilbert transform to transmission spectra to find the group and refractive indices of a Cs vapor and thereby demonstrate how the Hilbert transform allows indirect measurement of the refractive index, group index, and group delay while avoiding the use of complicated experimental setups.

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  Daniel J Gauthier,et al.  Controlling the Velocity of Light Pulses , 2009, Science.

[3]  Zach DeVito,et al.  Opt , 2017 .

[4]  Ifan G. Hughes,et al.  Measurements and their Uncertainties: A practical guide to modern error analysis , 2010 .

[5]  Solomon M. Saltiel,et al.  Revisiting optical spectroscopy in a thin vapor cell: mixing of reflection and transmission as a Fabry–Perot microcavity effect , 2003 .

[6]  C. Adams,et al.  Absolute absorption on the rubidium D1 line including resonant dipole–dipole interactions , 2011, 1107.3092.

[7]  S. Knappe,et al.  Absolute absorption and dispersion of a rubidium vapour in the hyperfine Paschen–Back regime , 2012, 1208.1879.

[8]  Arturo Lezama,et al.  Spectroscopy in an extremely thin vapor cell: Comparing the cell-length dependence in fluorescence and in absorption techniques , 2004 .

[9]  G. Zumofen,et al.  Controlling the phase of a light beam with a single molecule. , 2011, Physical review letters.

[10]  Nicola Chiesa,et al.  Frequency-Dependent Modeling of Transformer Winding Impedance From ${\rm R}(\omega)/{\rm L}$ Measurements , 2014, IEEE Transactions on Power Delivery.

[11]  J. Keaveney,et al.  Cooperative Lamb shift in an atomic vapor layer of nanometer thickness. , 2012, Physical review letters.

[12]  Mark A. Zentile,et al.  ElecSus: A program to calculate the electric susceptibility of an atomic ensemble , 2014, Comput. Phys. Commun..

[13]  R. B. Warrington,et al.  STUDIES OF ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN THALLIUM VAPOR AND POSSIBLE UTILITY FOR MEASURING ATOMIC PARITY NONCONSERVATION , 1998 .

[14]  A. S. Zibrov,et al.  Stationary pulses of light in an atomic medium , 2003, Nature.

[15]  A. Mecozzi Retrieving the full optical response from amplitude data by Hilbert transform , 2009 .

[16]  K. W. Cattermole The Fourier Transform and its Applications , 1965 .

[17]  K. J. Weatherill,et al.  A giant electro-optic effect using polarizable dark states , 2008, 0804.3273.

[18]  J. Cirac,et al.  Experimental demonstration of quantum memory for light , 2004, Nature.

[19]  R. Boyd,et al.  Group delay measurement of fiber Bragg grating resonances in transmission: Fourier transform interferometry versus Hilbert transform , 2014 .

[20]  Solomon M. Saltiel,et al.  Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy , 2003 .

[21]  C. Adams,et al.  Non-linear Sagnac interferometry for pump-probe dispersion spectroscopy , 2003 .

[22]  Martial Ducloy,et al.  Sub-Doppler spectroscopy by sub-micron thin Cs vapour layer , 2001 .

[23]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[24]  Yi Cai,et al.  A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect , 2009 .

[25]  Ohno Kramers-Kronig analysis of reflection electron-energy-loss spectra measured with a cylindrical mirror analyzer. , 1989, Physical review. B, Condensed matter.

[26]  C. W. Peterson,et al.  Causality calculations in the time domain: An efficient alternative to the Kramers–Kronig method* , 1973 .

[27]  Frank E. Harris,et al.  Mathematical Methods for Physicists: A Comprehensive Guide , 2012 .

[28]  J. Keaveney,et al.  Maximal refraction and superluminal propagation in a gaseous nanolayer. , 2012, Physical review letters.

[29]  Xiao,et al.  Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms. , 1995, Physical review letters.

[30]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[31]  L. J. Wang,et al.  Gain-assisted superluminal light propagation , 2000, Nature.

[32]  Stephen H. Hall,et al.  Advanced Signal Integrity for High-Speed Digital Designs , 2009 .

[33]  Xinliang Zhang,et al.  Experimental observation of optical differentiation and optical Hilbert transformation using a single SOI microdisk chip , 2013, Scientific Reports.