Anticonvulsant effects of antiaris toxicaria aqueous extract: investigation using animal models of temporal lobe epilepsy

[1]  Á. Pascual-Leone,et al.  Exploring the efficacy of a 5-day course of transcranial direct current stimulation (TDCS) on depression and memory function in patients with well-controlled temporal lobe epilepsy , 2016, Epilepsy & Behavior.

[2]  Lloyd H. Michael,et al.  The Guide for the Care and Use of Laboratory Animals. , 2016, ILAR journal.

[3]  A. Diaz,et al.  Region-specific alterations of AMPA receptor phosphorylation and signaling pathways in the pilocarpine model of epilepsy , 2015, Neurochemistry International.

[4]  E. Castrén,et al.  Nimodipine Activates TrkB Neurotrophin Receptors and Induces Neuroplastic and Neuroprotective Signaling Events in the Mouse Hippocampus and Prefrontal Cortex , 2015, Cellular and Molecular Neurobiology.

[5]  Massimo Avoli,et al.  The kainic acid model of temporal lobe epilepsy , 2013, Neuroscience & Biobehavioral Reviews.

[6]  E. Woode,et al.  Anticonvulsant Effect of Antiaris toxicaria (Pers.) Lesch. (Moraceae) Aqueous Extract in Rodents , 2013, ISRN pharmacology.

[7]  J. Nowak Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration , 2013, Pharmacological reports : PR.

[8]  H. Lerche,et al.  Potassium channels: a review of broadening therapeutic possibilities for neurological diseases , 2013, Journal of Neurology.

[9]  Wen Jiang,et al.  Fingolimod (FTY720) inhibits neuroinflammation and attenuates spontaneous convulsions in lithium-pilocarpine induced status epilepticus in rat model , 2012, Pharmacology Biochemistry and Behavior.

[10]  A. Dhir Pentylenetetrazol (PTZ) Kindling Model of Epilepsy , 2012, Current protocols in neuroscience.

[11]  A. Lozano,et al.  Microinjection of GABAergic agents into the anterior nucleus of the thalamus modulates pilocarpine-induced seizures and status epilepticus , 2010, Seizure.

[12]  R. M. Freitas,et al.  Vitamin C antioxidant effects in hippocampus of adult Wistar rats after seizures and status epilepticus induced by pilocarpine , 2007, Neuroscience Letters.

[13]  A. Sureda,et al.  Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine , 2007, Brain Research Bulletin.

[14]  Barry Halliwell,et al.  Oxidative stress and neurodegeneration: where are we now? , 2006, Journal of neurochemistry.

[15]  E. Cavalheiro,et al.  CHAPTER 35 – The Pilocarpine Model of Seizures , 2006 .

[16]  F Edward Dudek,et al.  Chemoconvulsant Model of Chronic Spontaneous Seizures , 2005, Current protocols in neuroscience.

[17]  R. M. Freitas,et al.  Pilocarpine-induced status epilepticus in rats: lipid peroxidation level, nitrite formation, GABAergic and glutamatergic receptor alterations in the hippocampus, striatum and frontal cortex , 2004, Pharmacology Biochemistry and Behavior.

[18]  Margaret Fahnestock,et al.  Kindling and status epilepticus models of epilepsy: rewiring the brain , 2004, Progress in Neurobiology.

[19]  J. Kriz,et al.  Differential effects of dihydropyridine calcium channel blockers in kainic acid-induced experimental seizures in rats , 2003, Epilepsy Research.

[20]  G. Holmes,et al.  Anticonvulsant action and long-term effects of gabapentin in the immature brain , 2001, Neuropharmacology.

[21]  Y. Ben-Ari,et al.  Kainate, a double agent that generates seizures: two decades of progress , 2000, Trends in Neurosciences.

[22]  G. van Luijtelaar,et al.  Opposite effects of T- and L-type Ca(2+) channels blockers in generalized absence epilepsy. , 2000, European journal of pharmacology.

[23]  Meldrum Bs Antiepileptic drugs potentiating GABA. , 1999 .

[24]  B. Meldrum Antiepileptic drugs potentiating GABA. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[25]  F. Dudek,et al.  Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. , 1997, The Journal of comparative neurology.

[26]  Division on Earth Guide for the Care and Use of Laboratory Animals , 1996 .

[27]  A. Morales-Villagrán,et al.  Preferential stimulation of glutamate release by 4-aminopyridine in rat striatum in vivo , 1996, Neurochemistry International.

[28]  D. Gruol,et al.  Dehydroepiandrosterone sulfate alters synaptic potentials in area CA1 of the hippocampal slice , 1994, Brain Research.

[29]  D. Spencer,et al.  Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination , 1993, Annals of neurology.

[30]  J. Coyle,et al.  Oxidative stress, glutamate, and neurodegenerative disorders. , 1993, Science.

[31]  Barry Halliwell,et al.  Reactive Oxygen Species and the Central Nervous System , 1992, Journal of neurochemistry.

[32]  B. Longoni,et al.  Chronic administration of negative modulators produces chemical kindling and GABAA receptor down-regulation. , 1990, Advances in biochemical psychopharmacology.

[33]  Robert S. Fisher,et al.  Animal models of the epilepsies , 1989, Brain Research Reviews.

[34]  Z. Bortolotto,et al.  Review: Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: A novel experimental model of intractable epilepsy , 1989, Synapse.

[35]  R. C. Collins,et al.  The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures , 1987, Neuroscience.

[36]  E. Cavalheiro,et al.  Limbic seizures produced by pilocarpine in rats: Behavioural, electroencephalographic and neuropathological study , 1983, Behavioural Brain Research.

[37]  J. Coyle,et al.  Kainic Acid: Neurotoxicity and Receptor Interactions , 1982 .