A Posteriori Estimates Using Auxiliary Subspace Techniques
暂无分享,去创建一个
[1] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[2] Rüdiger Verfürth. A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.
[3] Christian Kreuzer,et al. Decay rates of adaptive finite elements with Dörfler marking , 2011, Numerische Mathematik.
[4] Jeffrey S. Ovall,et al. An efficient, reliable and robust error estimator for elliptic problems in R3 , 2011 .
[5] Gabriel R. Barrenechea,et al. An adaptive stabilized finite element method for the generalized Stokes problem , 2008 .
[6] J. Whiteman. The Mathematics of Finite Elements and Applications. , 1983 .
[7] Lennard Kamenski,et al. A study on using hierarchical basis error estimates in anisotropic mesh adaptation for the finite element method , 2011, Engineering with Computers.
[8] Jinchao Xu,et al. Superconvergent Derivative Recovery for Lagrange Triangular Elements of Degree p on Unstructured Grids , 2007, SIAM J. Numer. Anal..
[9] Peter Deuflhard,et al. Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..
[10] Randolph E. Bank,et al. A posteriori error estimates based on hierarchical bases , 1993 .
[11] Randolph E. Bank,et al. hp Adaptive finite elements based on derivative recovery and superconvergence , 2011, Comput. Vis. Sci..
[12] P. Carnevali,et al. New basis functions and computational procedures for p‐version finite element analysis , 1993 .
[13] Ricardo H. Nochetto,et al. Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.
[14] Zhiqiang Cai,et al. Pseudostress–velocity formulation for incompressible Navier–Stokes equations , 2010 .
[15] Ernst P. Stephan,et al. A HIERARCHICAL A POSTERIORI ERROR ESTIMATE FOR AN ADVECTION-DIFFUSION-REACTION PROBLEM , 2005 .
[16] Martin Vohralík,et al. Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..
[17] Rüdiger Verfürth,et al. Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.
[18] Ralf Kornhuber,et al. A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .
[19] Joachim Schöberl,et al. New shape functions for triangular p-FEM using integrated Jacobi polynomials , 2006, Numerische Mathematik.
[20] Jens Lang,et al. A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates , 2010, J. Comput. Phys..
[21] Victor Eijkhout,et al. The Role of the Strengthened Cauchy-Buniakowskii-Schwarz Inequality in Multilevel Methods , 1991, SIAM Rev..
[22] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[23] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[24] I. Babuska,et al. Hierarchical Finite Element Approaches Error Estimates and Adaptive Refinement , 1981 .
[25] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[26] Rüdiger Verfürth,et al. A posteriori error estimators for stationary convection–diffusion problems: a computational comparison , 2000 .
[27] Hengguang Li,et al. A posteriori error estimation of hierarchical type for the Schrödinger operator with inverse square potential , 2014, Numerische Mathematik.
[28] Randolph E. Bank,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Framework for Robust Eigenvalue and Eigenvector Error Estimation and Ritz Value Convergence Enhancement a Framework for Robust Eigenvalue and Eigenvector Error Estimation and Ritz Value Convergence Enhancement , 2022 .
[29] Hans-Görg Roos,et al. Anisotropic mesh refinement for problems with internal and boundary layers , 1999 .
[30] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[31] Martin Petzoldt,et al. A Posteriori Error Estimators for Elliptic Equations with Discontinuous Coefficients , 2002, Adv. Comput. Math..
[32] Randolph E. Bank,et al. Hierarchical bases and the finite element method , 1996, Acta Numerica.
[33] Rüdiger Verfürth,et al. Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..
[34] Jeffrey S. Ovall. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Function, Gradient and Hessian Recovery Using Quadratic Edge-bump Functions Function, Gradient and Hessian Recovery Using Quadratic Edge-bump Functions * , 2022 .
[35] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[36] Joseph E. Flaherty,et al. Hierarchical finite element bases for triangular and tetrahedral elements , 2001 .
[37] I. Babuska,et al. Finite Element Analysis , 2021 .
[38] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[39] D. Arnold. Spaces of Finite Element Differential Forms , 2012, 1208.2041.
[40] O. C. Zienkiewicz,et al. A–POSTERIORI ERROR ESTIMATION, ADAPTIVE MESH REFINEMENT AND MULTIGRID METHODS USING HIERARCHICAL FINITE ELEMENT BASES , 1985 .
[41] Barbara I. Wohlmuth,et al. On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..