A Posteriori Estimates Using Auxiliary Subspace Techniques

A posteriori error estimators based on auxiliary subspace techniques for second order elliptic problems in $$\mathbb {R}^d\ (d\ge 2)$$Rd(d≥2) are considered. In this approach, the solution of a global problem is utilized as the error estimator. As the continuity and coercivity of the problem trivially leads to an efficiency bound, the main focus of this paper is to derive an analogous effectivity bound and to determine the computational complexity of the auxiliary approximation problem. With a carefully chosen auxiliary subspace, we prove that the error is bounded above by the error estimate up to oscillation terms. In addition, we show that the stiffness matrix of the auxiliary problem is spectrally equivalent to its diagonal. Several numerical experiments are presented verifying the theoretical results.

[1]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[2]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[3]  Christian Kreuzer,et al.  Decay rates of adaptive finite elements with Dörfler marking , 2011, Numerische Mathematik.

[4]  Jeffrey S. Ovall,et al.  An efficient, reliable and robust error estimator for elliptic problems in R3 , 2011 .

[5]  Gabriel R. Barrenechea,et al.  An adaptive stabilized finite element method for the generalized Stokes problem , 2008 .

[6]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[7]  Lennard Kamenski,et al.  A study on using hierarchical basis error estimates in anisotropic mesh adaptation for the finite element method , 2011, Engineering with Computers.

[8]  Jinchao Xu,et al.  Superconvergent Derivative Recovery for Lagrange Triangular Elements of Degree p on Unstructured Grids , 2007, SIAM J. Numer. Anal..

[9]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[10]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[11]  Randolph E. Bank,et al.  hp Adaptive finite elements based on derivative recovery and superconvergence , 2011, Comput. Vis. Sci..

[12]  P. Carnevali,et al.  New basis functions and computational procedures for p‐version finite element analysis , 1993 .

[13]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[14]  Zhiqiang Cai,et al.  Pseudostress–velocity formulation for incompressible Navier–Stokes equations , 2010 .

[15]  Ernst P. Stephan,et al.  A HIERARCHICAL A POSTERIORI ERROR ESTIMATE FOR AN ADVECTION-DIFFUSION-REACTION PROBLEM , 2005 .

[16]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[17]  Rüdiger Verfürth,et al.  Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.

[18]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .

[19]  Joachim Schöberl,et al.  New shape functions for triangular p-FEM using integrated Jacobi polynomials , 2006, Numerische Mathematik.

[20]  Jens Lang,et al.  A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates , 2010, J. Comput. Phys..

[21]  Victor Eijkhout,et al.  The Role of the Strengthened Cauchy-Buniakowskii-Schwarz Inequality in Multilevel Methods , 1991, SIAM Rev..

[22]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[23]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[24]  I. Babuska,et al.  Hierarchical Finite Element Approaches Error Estimates and Adaptive Refinement , 1981 .

[25]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[26]  Rüdiger Verfürth,et al.  A posteriori error estimators for stationary convection–diffusion problems: a computational comparison , 2000 .

[27]  Hengguang Li,et al.  A posteriori error estimation of hierarchical type for the Schrödinger operator with inverse square potential , 2014, Numerische Mathematik.

[28]  Randolph E. Bank,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Framework for Robust Eigenvalue and Eigenvector Error Estimation and Ritz Value Convergence Enhancement a Framework for Robust Eigenvalue and Eigenvector Error Estimation and Ritz Value Convergence Enhancement , 2022 .

[29]  Hans-Görg Roos,et al.  Anisotropic mesh refinement for problems with internal and boundary layers , 1999 .

[30]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[31]  Martin Petzoldt,et al.  A Posteriori Error Estimators for Elliptic Equations with Discontinuous Coefficients , 2002, Adv. Comput. Math..

[32]  Randolph E. Bank,et al.  Hierarchical bases and the finite element method , 1996, Acta Numerica.

[33]  Rüdiger Verfürth,et al.  Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..

[34]  Jeffrey S. Ovall F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Function, Gradient and Hessian Recovery Using Quadratic Edge-bump Functions Function, Gradient and Hessian Recovery Using Quadratic Edge-bump Functions * , 2022 .

[35]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[36]  Joseph E. Flaherty,et al.  Hierarchical finite element bases for triangular and tetrahedral elements , 2001 .

[37]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[38]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[39]  D. Arnold Spaces of Finite Element Differential Forms , 2012, 1208.2041.

[40]  O. C. Zienkiewicz,et al.  A–POSTERIORI ERROR ESTIMATION, ADAPTIVE MESH REFINEMENT AND MULTIGRID METHODS USING HIERARCHICAL FINITE ELEMENT BASES , 1985 .

[41]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..