Nanostructured Materials and Architectures for Advanced Optoelectronic Synaptic Devices

Neuromorphic photonics system based on the principle of biological brain is emerging as one of the potential solutions to the bottleneck inherent in classical von Neumann computing system. Optoelectronic synaptic devices, used to mimic the visual function of bio‐synapse by adapting synaptic weights, can construct a highly efficient brain‐inspired computing system, in which the nanostructured materials and device architectures are attracting extensive interests, giving many potential benefits in confined light‐matter interaction, fast carrier dynamics, and photocarriers trapping. Moreover, the conjunction of traditional nanostructured photodetectors and newly realized electronic synapses also exhibit appealing performance for many practical applications including information processing and computing. This review focuses and summarizes on recent achievement in developing advanced optoelectronic synaptic devices based on nanostructured materials as 0D (quantum dots), 1D, and 2D materials, as well as, the rapidly evolving hybrid heterostructures. In addition, challenges and promising prospects in this research field are also discussed.

[1]  David-Wei Zhang,et al.  Reconfigurable optoelectronic memristor for in-sensor computing applications , 2021 .

[2]  Qingliang Liao,et al.  Interface Engineering in 1D ZnO‐Based Heterostructures for Photoelectrical Devices , 2021, Advanced Functional Materials.

[3]  F. Gao,et al.  Ultralow Power Optical Synapses Based on MoS2 Layers by Indium‐Induced Surface Charge Doping for Biomimetic Eyes , 2021, Advanced materials.

[4]  I. Mitrovic,et al.  Bio‐Inspired Photoelectric Artificial Synapse based on Two‐Dimensional Ti3C2Tx MXenes Floating Gate , 2021, Advanced Functional Materials.

[5]  Yiming Zhu,et al.  Optoelectronic Synapses Based on Photo‐Induced Doping in MoS2/h‐BN Field‐Effect Transistors , 2021, Advanced Optical Materials.

[6]  Yadong Jiang,et al.  Controllable resistive switching of STO:Ag/SiO2-based memristor synapse for neuromorphic computing , 2021, Journal of Materials Science & Technology.

[7]  Zhihong Li,et al.  Complementary Photo-Synapses Based on Light-Stimulated Porphyrin-Coated Silicon Nanowires Field-Effect Transistors (LPSNFET). , 2021, Small.

[8]  P. Chu,et al.  Optoelectronic Artificial Synapses Based on Two-Dimensional Transitional-Metal Trichalcogenide. , 2021, ACS applied materials & interfaces.

[9]  H. Cao,et al.  IGZO/CsPbBr3-Nanoparticles/IGZO Neuromorphic Phototransistors and Their Optoelectronic Coupling Applications. , 2021, ACS applied materials & interfaces.

[10]  Chris F. McConville,et al.  A Visible‐Blind Photodetector and Artificial Optoelectronic Synapse Using Liquid‐Metal Exfoliated ZnO Nanosheets , 2021, Advanced Optical Materials.

[11]  Guangsheng Fu,et al.  Visible light responsive optoelectronic memristor device based on CeOx/ZnO structure for artificial vision system , 2021 .

[12]  Zhongrui Wang,et al.  In-sensor reservoir computing for language learning via two-dimensional memristors , 2021, Science Advances.

[13]  Su‐Ting Han,et al.  Multimodal optoelectronic neuromorphic electronics based on lead-free perovskite-mixed carbon nanotubes , 2021 .

[14]  Pengfei Yang,et al.  Optogenetics‐Inspired Neuromorphic Optoelectronic Synaptic Transistors with Optically Modulated Plasticity , 2021, Advanced Optical Materials.

[15]  C. D. Wright,et al.  A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices , 2021, Journal of Applied Physics.

[16]  Gahyeong Kim,et al.  Beyond the Bandgap Photoluminescence of Colloidal Semiconductor Nanocrystals. , 2021, The journal of physical chemistry letters.

[17]  E. Lhuillier,et al.  Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration. , 2021, Chemical reviews.

[18]  Zhong Lin Wang,et al.  Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure , 2021, Science Advances.

[19]  C. Yeon,et al.  Polyvinylalcohol (PVA)-Assisted Exfoliation of ReS2 Nanosheets and the Use of ReS2-PVA Composites for Transparent Memristive Photosynapse Devices. , 2021, ACS applied materials & interfaces.

[20]  S. Park,et al.  Recent Progress in Transistor‐Based Optoelectronic Synapses: From Neuromorphic Computing to Artificial Sensory System , 2021, Adv. Intell. Syst..

[21]  Leyong Jiang,et al.  Photoelectric Visual Adaptation Based on 0D‐CsPbBr3‐Quantum‐Dots/2D‐MoS2 Mixed‐Dimensional Heterojunction Transistor , 2021, Advanced Functional Materials.

[22]  W. Pernice,et al.  Parallel convolutional processing using an integrated photonic tensor core , 2021, Nature.

[23]  Dong-Kyun Ko,et al.  Vertically Stacked Intraband Quantum Dot Devices for Mid-Wavelength Infrared Photodetection. , 2020, ACS applied materials & interfaces.

[24]  Tongbu Lu,et al.  Large-Scale and Flexible Optical Synapses for Neuromorphic Computing and Integrated Visible Information Sensing Memory Processing. , 2020, ACS nano.

[25]  I. Staude,et al.  Giant persistent photoconductivity in monolayer MoS2 field-effect transistors , 2020, npj 2D Materials and Applications.

[26]  L. Tetard,et al.  Optoelectronic synapse using monolayer MoS2 field effect transistors , 2020, Scientific Reports.

[27]  S. Walia,et al.  Fully Light‐Controlled Memory and Neuromorphic Computation in Layered Black Phosphorus , 2020, Advanced materials.

[28]  R. Naaman,et al.  Optical Multilevel Spin Bit Device Using Chiral Quantum Dots. , 2020, Nano letters.

[29]  Jayan Thomas,et al.  Growing Perovskite Quantum Dots on Carbon Nanotubes for Neuromorphic Optoelectronic Computing , 2020, Advanced Electronic Materials.

[30]  Zhijun Ning,et al.  Integrated Structure and Device Engineering for High Performance and Scalable Quantum Dot Infrared Photodetectors. , 2020, Small.

[31]  M. Notomi,et al.  Hybrid Nanowire Photodetector Integrated in a Silicon Photonic Crystal , 2020 .

[32]  Jun He,et al.  Vertical 0D-Perovskite/2D-MoS2 van der Waals Heterojunction Phototransistor for Emulating Photoelectric-Synergistically Classical Pavlovian Conditioning and Neural Coding Dynamics. , 2020, Small.

[33]  Caofeng Pan,et al.  Recent Progress in Optoelectronic Synapses for Artificial Visual‐Perception System , 2020, Small Structures.

[34]  Jr-hau He,et al.  Optoelectronic Ferroelectric Domain‐Wall Memories Made from a Single Van Der Waals Ferroelectric , 2020, Advanced Functional Materials.

[35]  Rohit Abraham John,et al.  Halide Perovskite Quantum Dots Photosensitized‐Amorphous Oxide Transistors for Multimodal Synapses , 2020, Advanced Materials Technologies.

[36]  Yadong Jiang,et al.  Color‐Recognizing Si‐Based Photonic Synapse for Artificial Visual System , 2020, Adv. Intell. Syst..

[37]  Jia Huang,et al.  A perovskite/organic semiconductor based photonic synaptic transistor for artificial visual system. , 2020, ACS applied materials & interfaces.

[38]  Yanping Yuan,et al.  Design of low loss 1 × 1 and 1 × 2 phase-change optical switches with different crystalline phases of Ge2Sb2Te5 films , 2020, Nanotechnology.

[39]  Pingping Chen,et al.  Surface States Modulated High-performance InAs Nanowire Phototransistor. , 2020, The journal of physical chemistry letters.

[40]  P. Guyot-Sionnest,et al.  Size Distribution Effects on Mobility and Intraband Gap of HgSe Quantum Dots , 2020 .

[41]  Bicky A. Marquez,et al.  Graphene-based photonic synapse for multi wavelength neural networks , 2020, MRS Advances.

[42]  Xiaodong Pi,et al.  Zero-power optoelectronic synaptic devices , 2020, Nano Energy.

[43]  F. Rosei,et al.  High-response, ultrafast-speed and self-powered photodetection achieved in InP@ZnS-MoS2 phototransistors with interdigitated Pt electrodes. , 2020, ACS applied materials & interfaces.

[44]  Bo Liu,et al.  Bidirectional All‐Optical Synapses Based on a 2D Bi2O2Se/Graphene Hybrid Structure for Multifunctional Optoelectronics , 2020, Advanced Functional Materials.

[45]  F. Libisch,et al.  Band Nesting in Two-Dimensional Crystals: An Exceptionally Sensitive Probe of Strain , 2020, Nano letters.

[46]  Yi Shi,et al.  An Optically Modulated Organic Schottky‐Barrier Planar‐Diode‐Based Artificial Synapse , 2020, Advanced Optical Materials.

[47]  B. Bai,et al.  Towards silicon photonic neural networks for artificial intelligence , 2020, Science China Information Sciences.

[48]  L. Chua,et al.  All‐Optically Controlled Memristor for Optoelectronic Neuromorphic Computing , 2020, Advanced Functional Materials.

[49]  A. Molina‐Mendoza,et al.  Nonvolatile Programmable WSe2 Photodetector , 2020, Advanced Optical Materials.

[50]  Jie Hu,et al.  Nanoscale All-Oxide-Heterostructured Bio-inspired Optoresponsive Nociceptor , 2020, Nano-micro letters.

[51]  Fei Zhuge,et al.  Broadband Optoelectronic Synaptic Thin‐Film Transistors Based on Oxide Semiconductors , 2020, physica status solidi (RRL) – Rapid Research Letters.

[52]  Su‐Ting Han,et al.  Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. , 2020, Chemical reviews.

[53]  Damien Querlioz,et al.  Physics for neuromorphic computing , 2020, Nature Reviews Physics.

[54]  Jianquan Yao,et al.  Artificial synapses with photoelectric plasticity and memory behaviors based on charge trapping memristive system , 2020 .

[55]  M. Becker,et al.  Solution‐Processed Flexible Broadband Photodetectors with Solution‐Processed Transparent Polymeric Electrode , 2020, Advanced Functional Materials.

[56]  A. Rostami,et al.  Multi-wavelength solution-processed quantum dot laser , 2020 .

[57]  Jang‐Sik Lee,et al.  Synergistic Improvement of Long‐Term Plasticity in Photonic Synapses Using Ferroelectric Polarization in Hafnia‐Based Oxide‐Semiconductor Transistors , 2020, Advanced materials.

[58]  B. Pradhan,et al.  Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice , 2020, Science Advances.

[59]  Yadong Jiang,et al.  Analog Switching and Artificial Synaptic Behavior of Ag/SiOx:Ag/TiOx/p++-Si Memristor Device , 2020, Nanoscale Research Letters.

[60]  Tae Whan Kim,et al.  Optoelectronic Perovskite Synapses for Neuromorphic Computing , 2020, Advanced Functional Materials.

[61]  Seyong Oh,et al.  Recent Progress in Artificial Synapses Based on Two-Dimensional van der Waals Materials for Brain-Inspired Computing , 2020 .

[62]  Bin Gao,et al.  Fully hardware-implemented memristor convolutional neural network , 2020, Nature.

[63]  Marin Alexe,et al.  Artificial Optoelectronic Synapses Based on Ferroelectric Field-Effect Enabled 2D Transition Metal Dichalcogenide Memristive Transistors. , 2019, ACS nano.

[64]  Shilei Dai,et al.  Light‐Stimulated Artificial Synapses Based on 2D Organic Field‐Effect Transistors , 2019, Advanced Electronic Materials.

[65]  T. Dong,et al.  Tuning 2D Black Phosphorus: Defect Tailoring and Surface Functionalization , 2019 .

[66]  Yong-Hoon Kim,et al.  Environment‐Adaptable Artificial Visual Perception Behaviors Using a Light‐Adjustable Optoelectronic Neuromorphic Device Array , 2019, Advanced materials.

[67]  Su‐Ting Han,et al.  Near‐Infrared‐Irradiation‐Mediated Synaptic Behavior from Tunable Charge‐Trapping Dynamics , 2019, Advanced Electronic Materials.

[68]  F. Pan,et al.  Electric and light dual-gate tunable MoS2 memtransistor. , 2019, ACS applied materials & interfaces.

[69]  Qingtian Zhang,et al.  Synaptic silicon-nanocrystal phototransistors for neuromorphic computing , 2019, Nano Energy.

[70]  Joondong Kim,et al.  Transparent and flexible photonic artificial synapse with piezo-phototronic modulator: Versatile memory capability and higher order learning algorithm , 2019, Nano Energy.

[71]  Krishna C. Saraswat,et al.  Infrared Detectable MoS2 Phototransistor and Its Application to Artificial Multi-Level Optic-Neural Synapse. , 2019, ACS nano.

[72]  S. Zhuiykov,et al.  A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities , 2019, Nature Communications.

[73]  Rui Yang,et al.  Memristive Synapses and Neurons for Bioinspired Computing , 2019, Advanced Electronic Materials.

[74]  A. Pan,et al.  Ultra-high hole mobility of Sn-catalyzed GaSb nanowires for high speed infrared photodetectors. , 2019, Nano letters.

[75]  Weitong Wu,et al.  Optoelectronic neuromorphic thin-film transistors capable of selective attention and with ultra-low power dissipation , 2019, Nano Energy.

[76]  He Qian,et al.  Understanding memristive switching via in situ characterization and device modeling , 2019, Nature Communications.

[77]  Yongli Gao,et al.  Solar-blind SnO2 nanowire photo-synapses for associative learning and coincidence detection , 2019, Nano Energy.

[78]  Shimeng Yu,et al.  Optoelectronic resistive random access memory for neuromorphic vision sensors , 2019, Nature Nanotechnology.

[79]  J. Feldmann,et al.  All-optical spiking neurosynaptic networks with self-learning capabilities , 2019, Nature.

[80]  Hailong Zhu,et al.  Epitaxial Growth of 6 in. Single-Crystalline Graphene on a Cu/Ni (111) Film at 750 °C via Chemical Vapor Deposition. , 2019, Small.

[81]  Sharath Sriram,et al.  Optically Stimulated Artificial Synapse Based on Layered Black Phosphorus. , 2019, Small.

[82]  Ning Han,et al.  Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires , 2019, Nature Communications.

[83]  D. Norris Multispectral quantum-dot photodetectors , 2019, Nature Photonics.

[84]  Chuan Liu,et al.  Enhanced UV‐C Detection of Perovskite Photodetector Arrays via Inorganic CsPbBr3 Quantum Dot Down‐Conversion Layer , 2019, Advanced Optical Materials.

[85]  Claudio U. Hail,et al.  Nanoprinted Quantum Dot–Graphene Photodetectors , 2019, Advanced Optical Materials.

[86]  Yan Wang,et al.  Light-Stimulated Synaptic Transistors Fabricated by a Facile Solution Process Based on Inorganic Perovskite Quantum Dots and Organic Semiconductors. , 2019, Small.

[87]  Yu Huang,et al.  Van der Waals integration before and beyond two-dimensional materials , 2019, Nature.

[88]  Jianwen Zhao,et al.  Optoelectronic Properties of Printed Photogating Carbon Nanotube Thin Film Transistors and Their Application for Light-Stimulated Neuromorphic Devices. , 2019, ACS applied materials & interfaces.

[89]  Yu-Lun Chueh,et al.  Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor , 2019, Nano Energy.

[90]  Jang‐Sik Lee,et al.  Ferroelectric Analog Synaptic Transistors. , 2019, Nano letters.

[91]  C. Wright,et al.  Tunable Volatility of Ge2Sb2Te5 in Integrated Photonics , 2019, Advanced Functional Materials.

[92]  Q. Vu,et al.  Two‐Terminal Multibit Optical Memory via van der Waals Heterostructure , 2018, Advanced materials.

[93]  Xing-jie Liang,et al.  Y2O3 Nanoparticles Caused Bone Tissue Damage by Breaking the Intracellular Phosphate Balance in Bone Marrow Stromal Cells. , 2018, ACS nano.

[94]  Mingsheng Xu,et al.  Electroluminescent synaptic devices with logic functions , 2018, Nano Energy.

[95]  David-Wei Zhang,et al.  A MoS2/PTCDA Hybrid Heterojunction Synapse with Efficient Photoelectric Dual Modulation and Versatility , 2018, Advanced materials.

[96]  M. S. Jeong,et al.  Switchable Two‐Terminal Transparent Optoelectronic Devices Based on 2D Perovskite , 2018, Advanced Electronic Materials.

[97]  Wei Li,et al.  Low-Dimensional Materials and State-of-the-Art Architectures for Infrared Photodetection , 2018, Sensors.

[98]  H-S Philip Wong,et al.  Artificial optic-neural synapse for colored and color-mixed pattern recognition , 2018, Nature Communications.

[99]  Yanqing Wu,et al.  High-performance transistors based on monolayer CVD MoS2 grown on molten glass , 2018, Applied Physics Letters.

[100]  A. Zayats,et al.  Optoelectronic synapses based on hot-electron-induced chemical processes. , 2018, Nano letters.

[101]  Hong Wang,et al.  Photoelectric Plasticity in Oxide Thin Film Transistors with Tunable Synaptic Functions , 2018, Advanced Electronic Materials.

[102]  Wei Li,et al.  Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing , 2018, Nano Energy.

[103]  Xiaomin Ren,et al.  Mimicking synaptic functionality with an InAs nanowire phototransistor , 2018, Nanotechnology.

[104]  Qingliang Liao,et al.  All‐Inorganic Perovskite Quantum Dot‐Monolayer MoS2 Mixed‐Dimensional van der Waals Heterostructure for Ultrasensitive Photodetector , 2018, Advanced science.

[105]  K. Crozier,et al.  Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature , 2018, Nature Photonics.

[106]  Shimeng Yu,et al.  A ferroelectric field effect transistor based synaptic weight cell , 2018, Journal of Physics D: Applied Physics.

[107]  Rui Yang,et al.  Optically modulated electric synapses realized with memristors based on ZnO nanorods , 2018, Applied Physics Letters.

[108]  Su‐Ting Han,et al.  Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing , 2018, Advanced materials.

[109]  F. Xia,et al.  Progress on Black Phosphorus Photonics , 2018, Advanced Optical Materials.

[110]  Jaeyoung Jang,et al.  Surface Modification of CdSe Quantum-Dot Floating Gates for Advancing Light-Erasable Organic Field-Effect Transistor Memories. , 2018, ACS nano.

[111]  Yingli Chu,et al.  Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors. , 2018, ACS applied materials & interfaces.

[112]  Arindam Basu,et al.  Synergistic Gating of Electro‐Iono‐Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity , 2018, Advanced materials.

[113]  Lin Gan,et al.  Photonic Potentiation and Electric Habituation in Ultrathin Memristive Synapses Based on Monolayer MoS2. , 2018, Small.

[114]  Dan-Chun Hu,et al.  Memristive Synapses with Photoelectric Plasticity Realized in ZnO1-x/AlOy Heterojunction. , 2018, ACS applied materials & interfaces.

[115]  D. Fan,et al.  Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All‐Optical Thresholding Devices , 2018 .

[116]  Di Chen,et al.  An Artificial Flexible Visual Memory System Based on an UV‐Motivated Memristor , 2018, Advanced materials.

[117]  W. Lu,et al.  Optogenetics-Inspired Tunable Synaptic Functions in Memristors. , 2018, ACS nano.

[118]  H. Zeng,et al.  Boosting Two-Dimensional MoS2/CsPbBr3 Photodetectors via Enhanced Light Absorbance and Interfacial Carrier Separation. , 2018, ACS applied materials & interfaces.

[119]  F. Xia,et al.  Widely tunable black phosphorus mid-infrared photodetector , 2017, Nature Communications.

[120]  Jia Huang,et al.  High‐Performance Inorganic Perovskite Quantum Dot–Organic Semiconductor Hybrid Phototransistors , 2017, Advanced materials.

[121]  S. Long,et al.  Light-Gated Memristor with Integrated Logic and Memory Functions. , 2017, ACS nano.

[122]  Heejeong Jeong,et al.  Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors , 2017, Nature Communications.

[123]  Weida Hu,et al.  Photogating in Low Dimensional Photodetectors , 2017, Advanced science.

[124]  Deren Yang,et al.  Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors. , 2017, ACS nano.

[125]  H. Linke,et al.  Intersubband Quantum Disc-in-Nanowire Photodetectors with Normal-Incidence Response in the Long-Wavelength Infrared. , 2017, Nano letters.

[126]  Harish Bhaskaran,et al.  On-chip photonic synapse , 2017, Science Advances.

[127]  Rong Zhang,et al.  A light-stimulated synaptic device based on graphene hybrid phototransistor , 2017 .

[128]  B. Nickel,et al.  Advances in Quantum‐Confined Perovskite Nanocrystals for Optoelectronics , 2017 .

[129]  F. Wen,et al.  Improved photoresponse and stable photoswitching of tungsten disulfide single-layer phototransistor decorated with black phosphorus nanosheets , 2017, Journal of Materials Science.

[130]  Yong‐Hoon Kim,et al.  Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity , 2017, Advanced materials.

[131]  R. Rold'an,et al.  A new bandgap tuning knob , 2017, Nature Photonics.

[132]  Yongli Gao,et al.  2D MoS2 Neuromorphic Devices for Brain-Like Computational Systems. , 2017, Small.

[133]  Chao Xie,et al.  Photodetectors Based on Two‐Dimensional Layered Materials Beyond Graphene , 2017 .

[134]  Yang-Fan Xu,et al.  A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. , 2017, Journal of the American Chemical Society.

[135]  Siwei Yang,et al.  Green, Rapid, and Universal Preparation Approach of Graphene Quantum Dots under Ultraviolet Irradiation. , 2017, ACS applied materials & interfaces.

[136]  Juwon Lee,et al.  Monolayer optical memory cells based on artificial trap-mediated charge storage and release , 2017, Nature Communications.

[137]  Sungho Kim,et al.  Pattern Recognition Using Carbon Nanotube Synaptic Transistors with an Adjustable Weight Update Protocol. , 2017, ACS nano.

[138]  S. Choi,et al.  Unique properties of graphene quantum dots and their applications in photonic/electronic devices , 2017 .

[139]  Qing Chen,et al.  Switching from Negative to Positive Photoconductivity toward Intrinsic Photoelectric Response in InAs Nanowire. , 2017, ACS applied materials & interfaces.

[140]  Hao Jiang,et al.  Efficient electrical control of thin-film black phosphorus bandgap , 2016, Nature Communications.

[141]  Wanlin Guo,et al.  Tunable Electrical Performance of Few-Layered Black Phosphorus by Strain. , 2016, Small.

[142]  M. Mas‐Torrent,et al.  Electrolyte‐Gated Organic Field‐Effect Transistor Based on a Solution Sheared Organic Semiconductor Blend , 2016, Advanced materials.

[143]  Chorng Haur Sow,et al.  Light-Matter Interactions in Phosphorene. , 2016, Accounts of chemical research.

[144]  Noah D Bronstein,et al.  Solution-Processed, High-Speed, and High-Quantum-Efficiency Quantum Dot Infrared Photodetectors , 2016 .

[145]  Kacper Pilarczyk,et al.  Synaptic Behavior in an Optoelectronic Device Based on Semiconductor‐Nanotube Hybrid , 2016 .

[146]  John F. Donegan,et al.  Associative Enhancement of Time Correlated Response to Heterogeneous Stimuli in a Neuromorphic Nanowire Device , 2016 .

[147]  Hyunsang Hwang,et al.  Organic core-sheath nanowire artificial synapses with femtojoule energy consumption , 2016, Science Advances.

[148]  J. Ho,et al.  Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays. , 2016, ACS nano.

[149]  Xiaodong Pi,et al.  Size‐Dependent Structures and Optical Absorption of Boron‐Hyperdoped Silicon Nanocrystals , 2016 .

[150]  Mingqiang Huang,et al.  Broadband Black‐Phosphorus Photodetectors with High Responsivity , 2016, Advanced materials.

[151]  Zhenxing Wang,et al.  Oriented Growth of Pb1−xSnxTe Nanowire Arrays for Integration of Flexible Infrared Detectors , 2016, Advanced materials.

[152]  Joshua B Smith,et al.  Growth of 2D black phosphorus film from chemical vapor deposition , 2016, Nanotechnology.

[153]  Ji Rong Sun,et al.  Ternary Synaptic Plasticity Arising from Memdiode Behavior of TiOx Single Nanowires , 2016 .

[154]  Hao Li,et al.  Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction , 2016 .

[155]  W. Lei,et al.  High-Performance Photo-Modulated Thin-Film Transistor Based on Quantum dots/Reduced Graphene Oxide Fragment-Decorated ZnO Nanowires , 2016, Nano-Micro Letters.

[156]  Weida Hu,et al.  Near‐Infrared Plasmonic 2D Semimetals for Applications in Communication and Biology , 2016 .

[157]  Yi Ding,et al.  Ligand-Free, Colloidal, and Plasmonic Silicon Nanocrystals Heavily Doped with Boron , 2016 .

[158]  R. Ruoff,et al.  Interaction of black phosphorus with oxygen and water , 2015, 1511.09201.

[159]  Allister F. McGuire,et al.  A skin-inspired organic digital mechanoreceptor , 2015, Science.

[160]  Yongbao Sun,et al.  Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory , 2015, Nature Communications.

[161]  S. K. Hazra,et al.  Role of metallic-like conductivity in unusual temperature-dependent transport in n-ZnO : Al/p-Si heterojunction diode , 2015 .

[162]  K. Kim,et al.  Impact of graphene and single-layer BN insertion on bipolar resistive switching characteristics in tungsten oxide resistive memory , 2015 .

[163]  S. Karna,et al.  Degradation of phosphorene in air: understanding at atomic level , 2015, 1508.07461.

[164]  Chengming Jiang,et al.  An Ultrahigh‐Resolution Digital Image Sensor with Pixel Size of 50 nm by Vertical Nanorod Arrays , 2015, Advanced materials.

[165]  Zhi-Xun Shen,et al.  Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. , 2015, Nature nanotechnology.

[166]  Du Xiang,et al.  Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus. , 2015, ACS nano.

[167]  C. N. Lau,et al.  Ionic Liquid Gating of Suspended MoS2 Field Effect Transistor Devices. , 2015, Nano letters.

[168]  Shao-Yu Chen,et al.  Extrinsic Origin of Persistent Photoconductivity in Monolayer MoS2 Field Effect Transistors , 2015, Scientific Reports.

[169]  Behrad Gholipour,et al.  Amorphous Metal‐Sulphide Microfibers Enable Photonic Synapses for Brain‐Like Computing , 2015 .

[170]  Yihong Wu,et al.  An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions , 2015, Advanced materials.

[171]  Yoshihiro Iwasa,et al.  Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. , 2015, ACS nano.

[172]  Bo Li,et al.  Optoelectronic memory using two-dimensional materials. , 2015, Nano letters.

[173]  Philippe Guyot-Sionnest,et al.  Colloidal quantum dots intraband photodetectors. , 2014, ACS nano.

[174]  John J Boland,et al.  A single nanoscale junction with programmable multilevel memory. , 2014, ACS nano.

[175]  E. Pelucchi,et al.  Hot-electron injection in Au nanorod-ZnO nanowire hybrid device for near-infrared photodetection. , 2014, Nano letters.

[176]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[177]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[178]  M. Demarteau,et al.  Tunable transport gap in phosphorene. , 2014, Nano letters.

[179]  Chang-Hua Liu,et al.  Graphene photodetectors with ultra-broadband and high responsivity at room temperature. , 2014, Nature nanotechnology.

[180]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[181]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[182]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[183]  Yi Shi,et al.  Artificial synapse network on inorganic proton conductor for neuromorphic systems , 2013, Nature Communications.

[184]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[185]  Xiao Wei Sun,et al.  A Versatile Light‐Switchable Nanorod Memory: Wurtzite ZnO on Perovskite SrTiO3 , 2013 .

[186]  F. Liang,et al.  Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. , 2013, ACS applied materials & interfaces.

[187]  A. Radenović,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[188]  L. Qiang,et al.  Single-mode lasing of nanowire self-coupled resonator. , 2013, Nanoscale.

[189]  T. Murphy,et al.  Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. , 2013, Nature nanotechnology.

[190]  Jr-Hau He,et al.  Few-Layer MoS2 with high broadband Photogain and fast optical switching for use in harsh environments. , 2013, ACS nano.

[191]  X. Miao,et al.  Ultrafast Synaptic Events in a Chalcogenide Memristor , 2013, Scientific Reports.

[192]  Se Hyun Kim,et al.  Electrolyte‐Gated Transistors for Organic and Printed Electronics , 2013, Advanced materials.

[193]  Alex Ming Shen,et al.  A Carbon Nanotube Synapse with Dynamic Logic and Learning , 2013, Advanced materials.

[194]  G. Konstantatos,et al.  Colloidal Quantum Dot Photodetectors , 2013 .

[195]  W. Pernice,et al.  Photonic non-volatile memories using phase change materials , 2012, 1208.1417.

[196]  T. Morie,et al.  Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks , 2012 .

[197]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[198]  Aaron M. Jones,et al.  Ultrafast hot-carrier-dominated photocurrent in graphene. , 2012, Nature nanotechnology.

[199]  Jin-woo Han,et al.  Photoactive memory by a Si-nanowire field-effect transistor. , 2012, ACS nano.

[200]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[201]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[202]  Takashi Taniguchi,et al.  Hot Carrier–Assisted Intrinsic Photoresponse in Graphene , 2011, Science.

[203]  L. Tong,et al.  Single mode lasing in coupled nanowires , 2011 .

[204]  K. Unterrainer,et al.  Intrinsic Response Time of Graphene Photodetectors , 2011, Nano letters.

[205]  A. Rogalski Recent progress in infrared detector technologies , 2011 .

[206]  Hongkun Park,et al.  Gate-activated photoresponse in a graphene p-n junction. , 2010, Nano letters.

[207]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[208]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[209]  Weisheng Zhao,et al.  Two‐Terminal Carbon Nanotube Programmable Devices for Adaptive Architectures , 2010, Advanced materials.

[210]  K. Wei,et al.  An optical programming/electrical erasing memory device: Organic thin film transistors incorporating core/shell CdSe@ZnSe quantum dots and poly(3-hexylthiophene) , 2009 .

[211]  Hiroshi Iwai,et al.  Roadmap for 22nm and beyond (Invited Paper) , 2009 .

[212]  Takashi Sekiguchi,et al.  Single‐Crystalline ZnS Nanobelts as Ultraviolet‐Light Sensors , 2009 .

[213]  Hongtao Yuan,et al.  High‐Density Carrier Accumulation in ZnO Field‐Effect Transistors Gated by Electric Double Layers of Ionic Liquids , 2009 .

[214]  C. Lynch Big data: How do your data grow? , 2008, Nature.

[215]  Matthew J. Panzer,et al.  Exploiting Ionic Coupling in Electronic Devices: Electrolyte‐Gated Organic Field‐Effect Transistors , 2008 .

[216]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[217]  Guy Rachmuth,et al.  Transistor analogs of emergent iono‐neuronal dynamics , 2008, HFSP journal.

[218]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[219]  J. Wu,et al.  Gate coupling and charge distribution in nanowire field effect transistors. , 2007, Nano letters.

[220]  L. Abbott,et al.  Neural network dynamics. , 2005, Annual review of neuroscience.

[221]  T. Keviczky,et al.  Receding horizon control of an F-16 aircraft: A comparative study , 2003, 2003 European Control Conference (ECC).

[222]  T. Vicsek Complexity: The bigger picture , 2002, Nature.

[223]  Carver A. Mead,et al.  A single-transistor silicon synapse , 1996 .

[224]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[225]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[226]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[227]  Qing Zhang,et al.  Perovskite quantum dot lasers , 2019 .

[228]  C. Wright,et al.  Nonvolatile All‐Optical 1 × 2 Switch for Chipscale Photonic Networks , 2017 .

[229]  Edward H. Sargent,et al.  Solution-processed semiconductors for next-generation photodetectors , 2017 .

[230]  G. Konstantatos,et al.  Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. , 2009, Nature nanotechnology.