IoT Securing System using Fuzzy Commitment for DCT-based Fingerprint Recognition

Internet of Things refers to a paradigm consisting of a variety of uniquely identifiable day to day things communicating with one another to form a large scale dynamic network. Securing access to this network is a current challenging issue. This paper proposes an encryption system suitable to IoT features. In this system we integrated the fuzzy commitment scheme in DCT-based recognition method for fingerprint. To demonstrate the efficiency of our scheme, the obtained results are analyzed and compared with direct matching (without encryption) according to the most used criteria; FAR and FRR.

[1]  Marco Gamassi,et al.  Fingerprint local analysis for high-performance minutiae extraction , 2005, IEEE International Conference on Image Processing 2005.

[2]  Kavita Tewari,et al.  Fingerprint Recognition and feature extraction using transform domain techniques , 2015, 2014 International Conference on Advances in Communication and Computing Technologies (ICACACT 2014).

[3]  Naveed Riaz,et al.  Biometric template security: an overview , 2018 .

[4]  T. Amornraksa,et al.  Applying FFT Features for Fingerprint Matching , 2006, 2006 1st International Symposium on Wireless Pervasive Computing.

[5]  Ricardo Neisse,et al.  DIAT: A Scalable Distributed Architecture for IoT , 2015, IEEE Internet of Things Journal.

[6]  Dario Maio,et al.  Direct Gray-Scale Minutiae Detection In Fingerprints , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Annies Joshy,et al.  Design and implementation of an IoT based secure biometric authentication system , 2017, 2017 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES).

[8]  Ignas G. Niemegeers,et al.  Address autoconfiguration in wireless ad hoc networks: protocols and techniques , 2008, IEEE Wireless Communications.

[9]  Anil K. Jain,et al.  Fingerprint Classification Using Orientation Field Flow Curves , 2004, ICVGIP.

[10]  Awadhesh Kumar Singh,et al.  Biometric-Based Authentication in Cloud Computing , 2018, Computer and Cyber Security.

[11]  Sheng-De Wang,et al.  Fingerprint feature extraction using Gabor filters , 1999 .

[12]  Bill N. Schilit,et al.  Enabling the Internet of Things , 2015, Computer.

[13]  Pauli Kuosmanen,et al.  Fingerprint recognition using wavelet features , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[14]  S. H. Gerez,et al.  A correlation-based fingerprint verification system , 2000 .

[15]  Mayer Aladjem,et al.  Fingerprint image enhancement using filtering techniques , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[16]  Javier Ortega-Garcia,et al.  Minutiae extraction scheme for fingerprint recognition systems , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[17]  Mark Mohammad Tehranipoor,et al.  Hardware security meets biometrics for the age of IoT , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[18]  S. Srinivasan,et al.  A survey on biometric based authentication in cloud computing , 2016, 2016 International Conference on Inventive Computation Technologies (ICICT).

[19]  Evgeny M. Khorov,et al.  A survey on IEEE 802.11ah: An enabling networking technology for smart cities , 2015, Comput. Commun..

[20]  Steven Furnell,et al.  Multi-modal Behavioural Biometric Authentication for Mobile Devices , 2012, SEC.

[21]  Mohamed Khalil Hani,et al.  Biometric encryption using fingerprint fuzzy vault for FPGA-based embedded systems , 2009, TENCON 2009 - 2009 IEEE Region 10 Conference.

[22]  Martin Wattenberg,et al.  A fuzzy commitment scheme , 1999, CCS '99.

[23]  Raghudeep Kannavara,et al.  Topics in Biometric Human-Machine Interaction Security , 2013, IEEE Potentials.

[24]  Wolfgang Leister,et al.  A Novel Authentication Framework Based on Biometric and Radio Fingerprinting for the IoT in eHealth , 2014 .

[25]  Sheng-De Wang,et al.  A Gabor filter-based approach to fingerprint recognition , 1999, 1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461).

[26]  M.P. Dale,et al.  DCT feature based fingerprint recognition , 2007, 2007 International Conference on Intelligent and Advanced Systems.

[27]  Zhao Yong,et al.  DCT fingerprint classifier based group fingerprint , 2014, 2014 International Conference on Audio, Language and Image Processing.

[28]  Dave Evans,et al.  How the Next Evolution of the Internet Is Changing Everything , 2011 .

[29]  G. Aguilar,et al.  Fingerprint Recognition , 2007, Second International Conference on Internet Monitoring and Protection (ICIMP 2007).

[30]  Arun Ross,et al.  A Survey on Anti-Spoofing Schemes for Fingerprint Recognition Systems , 2014 .

[31]  M. Arantes,et al.  A system for fingerprint minutiae classification and recognition , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[32]  T. Amornraksa,et al.  A fingerprint matching method using DCT features , 2005, IEEE International Symposium on Communications and Information Technology, 2005. ISCIT 2005..

[33]  Ingrid Moerman,et al.  IETF Standardization in the Field of the Internet of Things (IoT): A Survey , 2013, J. Sens. Actuator Networks.