A hybrid polyketide-nonribosomal peptide in nematodes that promotes larval survival

Polyketides and nonribosomal peptides are two important classes of natural products that are produced by many species of bacteria and fungi, but are exceedingly rare in metazoans. Here, we elucidate the structure of a hybrid polyketide-nonribosomal peptide from Caenorhabditis elegans that is produced in the CAN neurons and promotes survival during starvation-induced larval arrest. Our results uncover a novel mechanism by which animals respond to nutrient fluctuations to extend survival.

[1]  E. Perens,et al.  Identification of Caenorhabditis elegans genes required for neuronal differentiation and migration. , 1998, Genetics.

[2]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[3]  C Richard Hutchinson,et al.  A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. , 2003, Biochemistry.

[4]  H. Brückner,et al.  Marfey’s reagent for chiral amino acid analysis: A review , 2004, Amino Acids.

[5]  P. Dorrestein,et al.  Characterization of a new tailoring domain in polyketide biogenesis: the amine transferase domain of MycA in the mycosubtilin gene cluster. , 2005, Journal of the American Chemical Society.

[6]  Gary Ruvkun,et al.  Functional Genomic Analysis of C. elegans Molting , 2005, PLoS biology.

[7]  M. Fischbach,et al.  Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. , 2006, Chemical reviews.

[8]  P. Sternberg,et al.  DAF-16/FOXO Regulates Transcription of cki-1/Cip/Kip and Repression of lin-4 during C. elegans L1 Arrest , 2006, Current Biology.

[9]  A. Rougvie,et al.  C. elegans DAF-18/PTEN Mediates Nutrient-Dependent Arrest of Cell Cycle and Growth in the Germline , 2006, Current Biology.

[10]  J. Bessereau,et al.  Mos1-mediated insertional mutagenesis in Caenorhabditis elegans , 2007, Nature Protocols.

[11]  C. Calestani,et al.  A novel group of type I polyketide synthases (PKS) in animals and the complex phylogenomics of PKSs. , 2007, Gene.

[12]  R. Nass,et al.  The Nematode C. elegans as an Animal Model to Explore Toxicology In Vivo: Solid and Axenic Growth Culture Conditions and Compound Exposure Parameters , 2007, Current protocols in toxicology.

[13]  R. Butcher,et al.  Small-molecule pheromones that control dauer development in Caenorhabditis elegans. , 2007, Nature chemical biology.

[14]  Kaveh Ashrafi,et al.  A TRPV Channel Modulates C. elegans Neurosecretion, Larval Starvation Survival, and Adult Lifespan , 2008, PLoS genetics.

[15]  L. Du,et al.  PKS and NRPS release mechanisms. , 2010, Natural product reports.

[16]  Tyler A. Johnson,et al.  Azonazine, a novel dipeptide from a Hawaiian marine sediment-derived fungus, Aspergillus insulicola. , 2010, Organic letters.

[17]  Y. Shim,et al.  A circulatory transcriptional regulation among daf‐9, daf‐12, and daf‐16 mediates larval development upon cholesterol starvation in Caenorhabditis elegans † , 2010, Developmental dynamics : an official publication of the American Association of Anatomists.

[18]  K. Hong,et al.  Cytotoxic polyphenols from the marine-derived fungus Penicillium expansum. , 2010, Journal of natural products.

[19]  Hou‐Wen Lin,et al.  Simplextones A and B, unusual polyketides from the marine sponge Plakortis simplex. , 2011, Organic letters.

[20]  Min Han,et al.  microRNAs play critical roles in the survival and recovery of Caenorhabditis elegans from starvation-induced L1 diapause , 2011, Proceedings of the National Academy of Sciences.

[21]  D. Kwan,et al.  The Stereochemistry of Complex Polyketide Biosynthesis by Modular Polyketide Synthases , 2011, Molecules.

[22]  Kai Blin,et al.  NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity , 2011, Nucleic Acids Res..

[23]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[24]  Natalie I. Tasman,et al.  A Cross-platform Toolkit for Mass Spectrometry and Proteomics , 2012, Nature Biotechnology.

[25]  A. Rougvie,et al.  C. elegans AMPKs promote survival and arrest germline development during nutrient stress , 2012, Biology Open.

[26]  L. Baugh To Grow or Not to Grow: Nutritional Control of Development During Caenorhabditis elegans L1 Arrest , 2013, Genetics.

[27]  M. Driscoll,et al.  Complex expression dynamics and robustness in C. elegans insulin networks , 2013, Genome research.

[28]  H. Morita,et al.  Circular dichroism calculation for natural products , 2013, Journal of Natural Medicines.

[29]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[30]  L. Avery,et al.  Density dependence in Caenorhabditis larval starvation , 2013, Scientific Reports.

[31]  N. Moghal,et al.  Neurons Refine the Caenorhabditis elegans Body Plan by Directing Axial Patterning by Wnts , 2013, PLoS biology.

[32]  R. Withers,et al.  Development of a ¹³C-optimized 1.5-mm high temperature superconducting NMR probe. , 2013, Journal of magnetic resonance.

[33]  Liisa Holm,et al.  Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes , 2014, Proceedings of the National Academy of Sciences.

[34]  Ronald W Davis,et al.  Computational identification and analysis of orphan assembly-line polyketide synthases , 2013, The Journal of Antibiotics.

[35]  M. Kondo,et al.  Unexpected link between polyketide synthase and calcium carbonate biomineralization , 2015, Zoological Letters.

[36]  S. Ōmura,et al.  Ivermectin: panacea for resource-poor communities? , 2014, Trends in parasitology.

[37]  Adam P. Arkin,et al.  Interactive XCMS Online: Simplifying Advanced Metabolomic Data Processing and Subsequent Statistical Analyses , 2014, Analytical chemistry.

[38]  L. Baugh,et al.  Ins-4 and daf-28 function redundantly to regulate C. elegans L1 arrest. , 2014, Developmental biology.

[39]  M. Kotowska,et al.  Roles of type II thioesterases and their application for secondary metabolite yield improvement , 2014, Applied Microbiology and Biotechnology.

[40]  A. Rougvie,et al.  The C. elegans Hypodermis Couples Progenitor Cell Quiescence to the Dietary State , 2015, Current Biology.

[41]  R. Butcher,et al.  Acyl-CoA oxidase complexes control the chemical message produced by Caenorhabditis elegans , 2015, Proceedings of the National Academy of Sciences.

[42]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..