Adaptive potential of a Pacific salmon challenged by climate change

[1]  A. Farrell,et al.  Indirect genetic effects underlie oxygen-limited thermal tolerance within a coastal population of chinook salmon , 2014, Proceedings of the Royal Society B: Biological Sciences.

[2]  A. Hickey,et al.  Could thermal sensitivity of mitochondria determine species distribution in a changing climate? , 2014, Journal of Experimental Biology.

[3]  A. Farrell,et al.  Atlantic salmon show capability for cardiac acclimation to warm temperatures , 2014, Nature Communications.

[4]  D. Bekkevold,et al.  Local Adaptation at the Transcriptome Level in Brown Trout: Evidence from Early Life History Temperature Genomic Reaction Norms , 2014, PloS one.

[5]  J. Hutchings,et al.  Plastic and evolutionary responses to climate change in fish , 2014, Evolutionary applications.

[6]  T. Clark,et al.  Response to Farrell and to Pörtner and Giomi , 2013, Journal of Experimental Biology.

[7]  J. Pandolfi,et al.  Predicting evolutionary responses to climate change in the sea. , 2013, Ecology letters.

[8]  T. Clark,et al.  Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations , 2013, Journal of Experimental Biology.

[9]  Chenz,et al.  Optimum and maximum temperatures of sockeye salmon (Oncorhynchus nerka) populations hatched at different temperatures , 2013 .

[10]  A. Farrell,et al.  Optimum Temperature in Juvenile Salmonids: Connecting Subcellular Indicators to Tissue Function and Whole-Organism Thermal Optimum , 2013, Physiological and Biochemical Zoology.

[11]  G. Somero,et al.  Latitudinal differences in Mytilus californianus thermal physiology , 2012 .

[12]  A. Farrell,et al.  Using maximum heart rate as a rapid screening tool to determine optimum temperature for aerobic scope in Pacific salmon Oncorhynchus spp. , 2012, Journal of fish biology.

[13]  P. Munday,et al.  Rapid transgenerational acclimation of a tropical reef fish to climate change , 2012 .

[14]  A. Farrell,et al.  Differences in Thermal Tolerance Among Sockeye Salmon Populations , 2011, Science.

[15]  R. Huey,et al.  Global metabolic impacts of recent climate warming , 2010, Nature.

[16]  G. Somero,et al.  The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’ , 2010, Journal of Experimental Biology.

[17]  A. Farrell Environment, antecedents and climate change: lessons from the study of temperature physiology and river migration of salmonids , 2009, Journal of Experimental Biology.

[18]  M. Angilletta Thermal Adaptation: A Theoretical and Empirical Synthesis , 2009 .

[19]  V. Loeschcke,et al.  Local adaptation in brown trout early life-history traits: implications for climate change adaptability , 2008, Proceedings of the Royal Society B: Biological Sciences.

[20]  A. Farrell,et al.  Physiology and Climate Change , 2008, Science.

[21]  A. Farrell,et al.  Pacific Salmon in Hot Water: Applying Aerobic Scope Models and Biotelemetry to Predict the Success of Spawning Migrations , 2008, Physiological and Biochemical Zoology.

[22]  A. Hamlet,et al.  Predicting differential effects of climate change at the population level with life‐cycle models of spring Chinook salmon , 2007 .

[23]  B. Block,et al.  Elevated Ca2+ ATPase (SERCA2) activity in tuna hearts: comparative aspects of temperature dependence. , 2007, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[24]  Rainer Knust,et al.  Climate Change Affects Marine Fishes Through the Oxygen Limitation of Thermal Tolerance , 2007, Science.

[25]  L. Crozier,et al.  Climate impacts at multiple scales: evidence for differential population responses in juvenile Chinook salmon. , 2006, The Journal of animal ecology.

[26]  Kevin C Weng,et al.  Satellite Tagging and Cardiac Physiology Reveal Niche Expansion in Salmon Sharks , 2005, Science.

[27]  Charles W Fox,et al.  Rapid Evolution of Egg Size in Captive Salmon , 2003, Science.

[28]  Farrell,et al.  The effect of temperature and adrenaline on the relative importance of the sarcoplasmic reticulum in contributing Ca2+ to force development in isolated ventricular trabeculae from rainbow trout , 1997, The Journal of experimental biology.

[29]  M. Lynch,et al.  Genetics and Analysis of Quantitative Traits , 1996 .