Statistical constraints on state preparation for a quantum computer

Quantum computing algorithms require that the quantum register be initially present in a superposition state. To achieve this, we consider the practical problem of creating a coherent superposition state of several qubits. We show that the constraints of quantum statistics require that the entropy of the system be brought down when several independent qubits are assembled together. In particular, we have: (i) not all initial states are realizable as pure states; (ii) the temperature of the system must be reduced. These factors, in addition to decoherence and sensitivity to errors, must be considered in the implementation of quantum computers.

[1]  S. Braunstein,et al.  Impossibility of deleting an unknown quantum state , 2000, Nature.

[2]  Asher Peres,et al.  Quantum Theory: Concepts and Methods , 1994 .

[3]  Subhash C. Kak Rotating a qubit , 2000, Inf. Sci..

[4]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[5]  Subhash Kak Speed of computation and simulation , 1996 .

[6]  Subhash Kak The Initialization Problem in Quantum Computing , 1998 .

[7]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[8]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[9]  L M Vandersypen,et al.  Experimental realization of an order-finding algorithm with an NMR quantum computer. , 2000, Physical review letters.

[10]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[11]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[12]  Peter L. Knight,et al.  Implementations of quantum logic: fundamental and experimental limits , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[14]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[15]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  Daniel R. Simon On the Power of Quantum Computation , 1997, SIAM J. Comput..

[17]  M. Plenio,et al.  Entanglement-Assisted Local Manipulation of Pure Quantum States , 1999, quant-ph/9905071.

[18]  Jonathan A. Jones,et al.  Geometric quantum computation using nuclear magnetic resonance , 2000, Nature.