The Helly property and satisfiability of Boolean formulas defined on set families

In this paper, we study the problem of satisfiability of Boolean formulas @f in conjunctive normal form (CNF) whose literals have the form v@?S and express the membership of values to sets S of a given set family S defined on a finite domain D. We establish the following dichotomy result. We show that checking the satisfiability of such formulas (called S-formulas) with three or more literals per clause is NP-complete except the trivial case when the intersection of all sets in S is nonempty. On the other hand, the satisfiability of S-formulas @f containing at most two literals per clause is decidable in polynomial time if S satisfies the Helly property, and is NP-complete otherwise (in the first case, we present an O(|@f|@?|S|@?|D|)-time algorithm for deciding if @f is satisfiable). Deciding whether a given set family S satisfies the Helly property can be done in polynomial time. We also overview several well-known examples of Helly families and discuss the consequences of our result to such set families and its relationship with the previous work on the satisfiability of signed formulas in multiple-valued logic.

[1]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[2]  Van de M. L. J. Vel Theory of convex structures , 1993 .

[3]  Fred S. Roberts,et al.  A Characterization of Clique Graphs. , 1971 .

[4]  J. Isbell Six theorems about injective metric spaces , 1964 .

[5]  Bernhard Beckert,et al.  Transformations between signed and classical clause logic , 1999, Proceedings 1999 29th IEEE International Symposium on Multiple-Valued Logic (Cat. No.99CB36329).

[6]  Hans-Jürgen Bandelt,et al.  Clique graphs and Helly graphs , 1991, J. Comb. Theory B.

[7]  Bernhard Beckert,et al.  The 2-SAT problem of regular signed CNF formulas , 2000, Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000).

[8]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[9]  Hans-Jürgen Bandelt,et al.  DismantlinG Absolute Retracts of Reflexive Graphs , 1989, Eur. J. Comb..

[10]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[11]  Richard J. Nowakowski,et al.  The smallest graph variety containing all paths , 1983, Discret. Math..

[12]  A. Dress Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .

[13]  H. Bandelt,et al.  Metric graph theory and geometry: a survey , 2006 .

[14]  Witold Charatonik,et al.  2-SAT Problems in Some Multi-Valued Logics Based on Finite Lattices , 2007, 37th International Symposium on Multiple-Valued Logic (ISMVL'07).

[15]  Jayme Luiz Szwarcfiter,et al.  Recognizing Clique-Helly Graphs , 1997, Ars Comb..

[16]  Christian G. Fermüller,et al.  Resolution-Based Theorem Proving for Manyvalued Logics , 1995, J. Symb. Comput..

[17]  Alexander Schrijver,et al.  Median graphs and Helly hypergraphs , 1979, Discret. Math..

[18]  S. P. Avann Metric ternary distributive semi-lattices , 1961 .

[19]  Carlos Ansótegui,et al.  New logical and complexity results for Signed-SAT , 2003, 33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings..

[20]  H. M. Mulder The interval function of a graph , 1980 .

[21]  Reiner Hähnle,et al.  A modular reduction of regular logic to classical logic , 2001, Proceedings 31st IEEE International Symposium on Multiple-Valued Logic.

[22]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[23]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[24]  Andreas W. M. Dress,et al.  Gated sets in metric spaces , 1987 .

[25]  N. Aronszajn,et al.  EXTENSION OF UNIFORMLY CONTINUOUS TRANSFORMATIONS AND HYPERCONVEX METRIC SPACES , 1956 .

[26]  Roman Barták,et al.  Constraint Processing , 2009, Encyclopedia of Artificial Intelligence.

[27]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.