The Helly property and satisfiability of Boolean formulas defined on set families
暂无分享,去创建一个
Gernot Salzer | Victor Chepoi | Nadia Creignou | Miki Hermann | V. Chepoi | G. Salzer | N. Creignou | M. Hermann
[1] Tomás Feder,et al. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..
[2] Van de M. L. J. Vel. Theory of convex structures , 1993 .
[3] Fred S. Roberts,et al. A Characterization of Clique Graphs. , 1971 .
[4] J. Isbell. Six theorems about injective metric spaces , 1964 .
[5] Bernhard Beckert,et al. Transformations between signed and classical clause logic , 1999, Proceedings 1999 29th IEEE International Symposium on Multiple-Valued Logic (Cat. No.99CB36329).
[6] Hans-Jürgen Bandelt,et al. Clique graphs and Helly graphs , 1991, J. Comb. Theory B.
[7] Bernhard Beckert,et al. The 2-SAT problem of regular signed CNF formulas , 2000, Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000).
[8] Andrei A. Bulatov,et al. A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.
[9] Hans-Jürgen Bandelt,et al. DismantlinG Absolute Retracts of Reflexive Graphs , 1989, Eur. J. Comb..
[10] Mihalis Yannakakis,et al. On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..
[11] Richard J. Nowakowski,et al. The smallest graph variety containing all paths , 1983, Discret. Math..
[12] A. Dress. Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .
[13] H. Bandelt,et al. Metric graph theory and geometry: a survey , 2006 .
[14] Witold Charatonik,et al. 2-SAT Problems in Some Multi-Valued Logics Based on Finite Lattices , 2007, 37th International Symposium on Multiple-Valued Logic (ISMVL'07).
[15] Jayme Luiz Szwarcfiter,et al. Recognizing Clique-Helly Graphs , 1997, Ars Comb..
[16] Christian G. Fermüller,et al. Resolution-Based Theorem Proving for Manyvalued Logics , 1995, J. Symb. Comput..
[17] Alexander Schrijver,et al. Median graphs and Helly hypergraphs , 1979, Discret. Math..
[18] S. P. Avann. Metric ternary distributive semi-lattices , 1961 .
[19] Carlos Ansótegui,et al. New logical and complexity results for Signed-SAT , 2003, 33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings..
[20] H. M. Mulder. The interval function of a graph , 1980 .
[21] Reiner Hähnle,et al. A modular reduction of regular logic to classical logic , 2001, Proceedings 31st IEEE International Symposium on Multiple-Valued Logic.
[22] Robert E. Tarjan,et al. A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..
[23] Thomas J. Schaefer,et al. The complexity of satisfiability problems , 1978, STOC.
[24] Andreas W. M. Dress,et al. Gated sets in metric spaces , 1987 .
[25] N. Aronszajn,et al. EXTENSION OF UNIFORMLY CONTINUOUS TRANSFORMATIONS AND HYPERCONVEX METRIC SPACES , 1956 .
[26] Roman Barták,et al. Constraint Processing , 2009, Encyclopedia of Artificial Intelligence.
[27] Sanjeev Khanna,et al. Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.