Biological Containers: Protein Cages as Multifunctional Nanoplatforms

Materials scientists increasingly draw inspiration from the study of how biological systems fabricate materials under mild synthetic conditions by using self-assembled macromolecular templates. Containerlike protein architectures such as viral capsids and ferritin are examples of such biological templates. These protein cages have three distinct interfaces that can be synthetically exploited: the interior, the exterior, and the interface between subunits. The subunits that comprise the building blocks of these structures can be modified both chemically and genetically in order to impart designed functionality to different surfaces of the cage. Therefore, the cages possess a great deal of synthetic flexibility, which allows for the introduction of multifunctionality in a single cage. In addition, hierarchical assembly of the functionalized cages paves the way for development of a new class of materials with a wide range of applications from electronics to biomedicine.

[1]  Jean M. J. Fréchet,et al.  Dendrimers and supramolecular chemistry , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  E. Ruoslahti,et al.  Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. , 1998, Science.

[3]  Jacob M Hooker,et al.  Interior surface modification of bacteriophage MS2. , 2004, Journal of the American Chemical Society.

[4]  A. Belcher,et al.  Bio‐inspired Synthesis of Protein‐Encapsulated CoPt Nanoparticles , 2005 .

[5]  C. Bracker,et al.  Structures derived from cowpea chlorotic mottle and brome mosaic virus protein. , 1969, Virology.

[6]  G. Falini,et al.  Supramolecular Assembly of Amelogenin Nanospheres into Birefringent Microribbons , 2005, Science.

[7]  J. Trent,et al.  Ordered nanoparticle arrays formed on engineered chaperonin protein templates , 2002, Nature materials.

[8]  M. Finn,et al.  Virus-glycopolymer conjugates by copper(I) catalysis of atom transfer radical polymerization and azide-alkyne cycloaddition. , 2005, Chemical communications.

[9]  T. Fuyuki,et al.  Floating Nanodot Gate Memory Devices Based on Biomineralized Inorganic Nanodot Array as a Storage Node , 2005 .

[10]  M. Taliansky,et al.  Specificity of protein-RNA and protein-protein interaction upon assembly of TMV in vivo and vitro. , 1975, Virology.

[11]  C. Walle,et al.  Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles , 2003, Nature.

[12]  I. Yamashita,et al.  Bio-template Synthesis of Uniform CdSe Nanoparticles Using Cage-shaped Protein, Apoferritin , 2004 .

[13]  A. Belcher,et al.  Chiral smectic C structures of virus-based films , 2003 .

[14]  Marianne Manchester,et al.  Canine parvovirus-like particles, a novel nanomaterial for tumor targeting , 2006, Journal of nanobiotechnology.

[15]  Comment on "electrically injected spin-polarized vertical-cavity surface-emitting lasers" [Appl. Phys. Lett. 87, 091108 (2005)] , 2006 .

[16]  E. Chiancone,et al.  Incorporation of iron by the unusual dodecameric ferritin from Listeria innocua , 1999 .

[17]  Kent Kirshenbaum,et al.  Viral nanoparticles donning a paramagnetic coat: conjugation of MRI contrast agents to the MS2 capsid. , 2006, Nano letters.

[18]  John E. Johnson,et al.  The development of cowpea mosaic virus as a potential source of novel vaccines. , 1996, Intervirology.

[19]  T. Douglas,et al.  Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. , 2000, Inorganic chemistry.

[20]  Qian Wang,et al.  Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. , 2003, Journal of the American Chemical Society.

[21]  M. Sarikaya Biomimetics: materials fabrication through biology. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  L. Hirth,et al.  Sequence from the assembly nucleation region of TMV RNA , 1977, Cell.

[23]  G. Stubbs Tobacco mosaic virus particle structure and the initiation of disassembly. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  Qian Wang,et al.  Self-assembly and cross-linking of bionanoparticles at liquid-liquid interfaces. , 2005, Angewandte Chemie.

[25]  T. Schmidt,et al.  The refined crystal structure of cowpea mosaic virus at 2.8 A resolution. , 1999, Virology.

[26]  I. Yamashita,et al.  Mechanism underlying specificity of proteins targeting inorganic materials. , 2006, Nano letters.

[27]  I. Yamashita,et al.  Synthesis of Co3O4 Nanoparticles Using the Cage-Shaped Protein, Apoferritin , 2005 .

[28]  M. Young,et al.  Protein Engineering of a Viral Cage for Constrained Nanomaterials Synthesis , 2002 .

[29]  Chandrajit L. Bajaj,et al.  VIPERdb: a relational database for structural virology , 2005, Nucleic Acids Res..

[30]  John E. Johnson,et al.  Natural supramolecular building blocks. Cysteine-added mutants of cowpea mosaic virus. , 2002, Chemistry & biology.

[31]  S. Mann,et al.  Synthesis and Structure of an Iron(III) Sulfide-Ferritin Bioinorganic Nanocomposite , 1995, Science.

[32]  S. Mann,et al.  Crystallization at Inorganic-organic Interfaces: Biominerals and Biomimetic Synthesis , 1993, Science.

[33]  Trevor Douglas,et al.  The Small Heat Shock Protein Cage from Methanococcus jannaschii Is a Versatile Nanoscale Platform for Genetic and Chemical Modification , 2003 .

[34]  A. Belcher,et al.  Biological Routes to Metal Alloy Ferromagnetic Nanostructures , 2004 .

[35]  Sung-Hou Kim,et al.  Purification, Crystallization, and Preliminary X-Ray Crystallographic Data Analysis of Small Heat Shock Protein Homolog fromMethanococcus jannaschii,a Hyperthermophile☆ , 1998 .

[36]  S. Hoffman,et al.  Malaria Epitopes Expressed on the surface of Recombinant Tobacco Mosaic Virus , 1995, Bio/Technology.

[37]  H. Lilie,et al.  Coupling of antibodies via protein Z on modified polyoma virus‐like particles , 2001, Protein science : a publication of the Protein Society.

[38]  A. Klug The tobacco mosaic virus particle: structure and assembly. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  A. Zlotnick,et al.  Redirecting the coat protein of a spherical virus to assemble into tubular nanostructures. , 2006, Journal of the American Chemical Society.

[40]  S. Larson,et al.  The crystallographic structure of brome mosaic virus. , 2002, Journal of molecular biology.

[41]  U. Sleytr,et al.  S-layer-coated liposomes as a versatile system for entrapping and binding target molecules. , 2000, Biochimica et biophysica acta.

[42]  Stephen Mann,et al.  Biomimetic Synthesis and Characterization of Magnetic Proteins (Magnetoferritin) , 1998 .

[43]  H. Lilie,et al.  Cell-Type Specific Targeting and Gene Expression Using a Variant of Polyoma VP1 Virus-Like Particles , 2003, Biological chemistry.

[44]  Stephen Mann,et al.  Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers , 1997, Nature.

[45]  Dietmar Pum,et al.  S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  P. Harrison,et al.  Mineralization in ferritin: an efficient means of iron storage. , 1999, Journal of structural biology.

[47]  John E. Johnson,et al.  Maturation of a tetravirus capsid alters the dynamic properties and creates a metastable complex. , 2005, Virology.

[48]  M. Rees,et al.  Properties of cowpea chlorotic mottle virus, its protein and nucleic acid. , 1968, Virology.

[49]  John E. Johnson,et al.  Complex pattern formation by cowpea mosaic virus nanoparticles , 2002 .

[50]  Stephen Mann,et al.  Characterization of the manganese core of reconstituted ferritin by x-ray absorption spectroscopy , 1993 .

[51]  M. Young,et al.  Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua. , 2003, Inorganic chemistry.

[52]  Elizabeth C. Theil,et al.  A short Fe-Fe distance in peroxodiferric ferritin: control of Fe substrate versus cofactor decay? , 2000, Science.

[53]  John E. Johnson,et al.  Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. , 2003, Journal of the American Chemical Society.

[54]  Ivar Giaever,et al.  Adsorption of ferritin , 1980 .

[55]  John E. Johnson,et al.  The role of subunit hinges and molecular "switches" in the control of viral capsid polymorphism. , 2006, Journal of structural biology.

[56]  Mato Knez,et al.  Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires , 2003 .

[57]  K. Kern,et al.  Binding the tobacco mosaic virus to inorganic surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[58]  M. Finn,et al.  Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. , 2005, Bioconjugate chemistry.

[59]  K. Nagayama,et al.  Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. , 2004, Angewandte Chemie.

[60]  D. Tsernoglou,et al.  The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site , 2000, Nature Structural Biology.

[61]  M. Young,et al.  Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. , 2006, Journal of the American Chemical Society.

[62]  J. W. Peters,et al.  Biomimetic synthesis of a H2 catalyst using a protein cage architecture. , 2005, Nano letters.

[63]  L. Goldstein,et al.  Use of cationized ferritin as a label of negative charges on cell surfaces. , 1972, Journal of ultrastructure research.

[64]  M. Young,et al.  Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture. , 2005, Chemical communications.

[65]  M. Kunitake,et al.  Electrochemical, AFM and QCM studies on ferritin immobilized onto a self-assembled monolayer-modified gold electrode , 2004 .

[66]  Ichiro Yamashita,et al.  Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin , 2003, Biotechnology and bioengineering.

[67]  John E. Johnson,et al.  Natural supramolecular building blocks. Wild-type cowpea mosaic virus. , 2002, Chemistry & biology.

[68]  George Georgiou,et al.  Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires , 2004, Science.

[69]  Shinji Matsui,et al.  Ten-Nanometer Resolution Nanolithography using Newly Developed 50-kV Electron Beam Direct Writing System , 1991 .

[70]  Stephen Mann,et al.  Tobacco Mosaic Virus Liquid Crystals as Templates for the Interior Design of Silica Mesophases and Nanoparticles , 2001 .

[71]  Florence Tama,et al.  The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. , 2002, Journal of molecular biology.

[72]  Wong,et al.  Synthesis and characterization of hydrophobic ferritin proteins , 1999, Journal of inorganic biochemistry.

[73]  A. Zlotnick,et al.  Mechanism of capsid assembly for an icosahedral plant virus. , 2000, Virology.

[74]  S. Franzen,et al.  Controlled encapsidation of gold nanoparticles by a viral protein shell. , 2006, Journal of the American Chemical Society.

[75]  Xiaoran Fu Stowell,et al.  Design of functional ferritin-like proteins with hydrophobic cavities. , 2006, Journal of the American Chemical Society.

[76]  W. Baumeister,et al.  Stabilization of a fragile two-dimensional protein crystal at the water-air interface - the square lattice of apoferritin , 1996 .

[77]  Ichiro Yamashita,et al.  Fabrication of a two-dimensional array of nano-particles using ferritin molecule , 2001 .

[78]  M. Young,et al.  Influence of electrostatic interactions on the surface adsorption of a viral protein cage. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[79]  G. Stubbs,et al.  Inorganic–Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus , 1999 .

[80]  K. Holmes Protein-RNA interactions during TMV assembly. , 1979, Journal of supramolecular structure.

[81]  Trevor Douglas,et al.  Paramagnetic viral nanoparticles as potential high‐relaxivity magnetic resonance contrast agents , 2005, Magnetic resonance in medicine.

[82]  T. Diekwisch,et al.  Evidence for amelogenin "nanospheres" as functional components of secretory-stage enamel matrix. , 1995, Journal of structural biology.

[83]  H. Kagawa,et al.  A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays. , 2005, Journal of the American Chemical Society.

[84]  M. Ozkan,et al.  Organic and inorganic nanoparticle hybrids. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[85]  John E. Johnson,et al.  The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[86]  R. Naik,et al.  Engineered protein cages for nanomaterial synthesis. , 2004, Journal of the American Chemical Society.

[87]  M. Rees,et al.  A mutant of cowpea chlorotic mottle virus with a perturbed assembly mechanism. , 1976, Virology.

[88]  John E. Johnson,et al.  Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. , 2006, Journal of the American Chemical Society.

[89]  A. Belcher,et al.  Spontaneous assembly of viruses on multilayered polymer surfaces , 2006, Nature materials.

[90]  R. Perham,et al.  The characterization of intermediates formed during the disassembly of tobacco mosaic virus at alkaline pH. , 1978, Virology.

[91]  K. Yoshizawa,et al.  Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. , 2005, Inorganic chemistry.

[92]  U. Sleytr,et al.  S-Layer Proteins , 2000, Journal of bacteriology.

[93]  John E. Johnson,et al.  RNA/protein interactions in icosahedral virus assembly , 1994 .

[94]  A. Belcher,et al.  Design criteria for engineering inorganic material-specific peptides. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[95]  A chemoselective biomolecular template for assembling diverse nanotubular materials , 2002 .

[96]  S. Mann,et al.  Hydrophobic proteins: Synthesis and characterization of organic-soluble alkylated ferritins. , 1998 .

[97]  T. Fuyuki,et al.  Nano-etching Using Nanodots Mask Fabricated by Bio-nano-process , 2003 .

[98]  Sung-Hou Kim,et al.  Crystal structure of a small heat-shock protein , 1998, Nature.

[99]  Paul F. Barbara,et al.  Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly , 2000, Nature.

[100]  M. Finn,et al.  Blue fluorescent antibodies as reporters of steric accessibility in virus conjugates. , 2003, Bioconjugate chemistry.

[101]  Trevor Douglas,et al.  Structural transitions in Cowpea chlorotic mottle virus (CCMV) , 2005, Physical biology.

[102]  T. Fuyuki,et al.  A 7-nm nanocolumn structure fabricated by using a ferritin iron-core mask and low-energy Cl neutral beams , 2004 .

[103]  Stephen Mann,et al.  Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates , 2003 .

[104]  John E. Johnson,et al.  Quasi-equivalent viruses: a paradigm for protein assemblies. , 1997, Journal of molecular biology.

[105]  Keith A. Powell,et al.  Directed Evolution and Biocatalysis. , 2001, Angewandte Chemie.

[106]  John E. Johnson,et al.  Influence of three‐dimensional structure on the immunogenicity of a peptide expressed on the surface of a plant virus , 2000, Journal of molecular recognition : JMR.

[107]  W. Baumeister,et al.  Two-dimensional protein array growth in thin layers of protein solution on aqueous subphases , 1994 .

[108]  M. Young,et al.  Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly. , 2006, Small.

[109]  M. Young,et al.  Metal binding to cowpea chlorotic mottle virus using terbium(III) fluorescence , 2003, JBIC Journal of Biological Inorganic Chemistry.

[110]  I. Yamashita,et al.  Endowing a ferritin-like cage protein with high affinity and selectivity for certain inorganic materials. , 2005, Small.

[111]  A. Bacher,et al.  The lumazine synthase-riboflavin synthase complex of Bacillus subtilis. Crystallization of reconstituted icosahedral beta-subunit capsids. , 1990, The Journal of biological chemistry.

[112]  Chengde Mao,et al.  DNA-Templated Fabrication of 1D Parallel and 2D Crossed Metallic Nanowire Arrays , 2003 .

[113]  Josef Michl,et al.  Two-dimensional supramolecular chemistry with molecular Tinkertoys , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[114]  John E. Johnson,et al.  Virus crystals as nanocomposite scaffolds. , 2005, Journal of the American Chemical Society.

[115]  R A Milligan,et al.  Automated identification of filaments in cryoelectron microscopy images. , 2001, Journal of structural biology.

[116]  G. Lomonossoff,et al.  Cowpea mosaic virus-based systems for the production of antigens and antibodies in plants. , 2005, Vaccine.

[117]  G. Lomonossoff,et al.  Stimulation of neutralizing antibodies to human immunodeficiency virus type 1 in three strains of mice immunized with a 22 amino acid peptide of gp41 expressed on the surface of a plant virus. , 1996, Vaccine.

[118]  M. Yeager,et al.  An archaeal antioxidant: characterization of a Dps-like protein from Sulfolobus solfataricus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[119]  B. Jacrot Studies on the assembly of a spherical plant virus. II. The mechanism of protein aggregation and virus swelling. , 1975, Journal of molecular biology.

[120]  A. Fincham,et al.  Molecular mechanisms of dental enamel formation. , 1995, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[121]  Andries Zijlstra,et al.  Viral nanoparticles as tools for intravital vascular imaging , 2006, Nature Medicine.

[122]  John E. Johnson,et al.  Icosahedral virus particles as addressable nanoscale building blocks. , 2002, Angewandte Chemie.

[123]  H. Yoshimura,et al.  Self-organized inorganic nanoparticle arrays on protein lattices. , 2005, Nano letters.

[124]  John E. Johnson,et al.  Chemical conjugation of heterologous proteins on the surface of Cowpea mosaic virus. , 2004, Bioconjugate chemistry.

[125]  G. Lomonossoff,et al.  Expression & immunogenicity of malaria merozoite peptides displayed on the small coat protein of chimaeric cowpea mosaic virus. , 2003, The Indian journal of medical research.

[126]  Silvio Aime,et al.  Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. , 2002, Angewandte Chemie.

[127]  Angela M. Belcher,et al.  Virus-Based Fabrication of Micro- and Nanofibers Using Electrospinning , 2004 .

[128]  L. Liljas,et al.  The refined structure of bacteriophage MS2 at 2.8 A resolution. , 1993, Journal of molecular biology.

[129]  J A Frank,et al.  Magnetoferritin: Characterization of a novel superparamagnetic MR contrast agent , 1994, Journal of magnetic resonance imaging : JMRI.

[130]  John E. Johnson,et al.  Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. , 1995, Structure.

[131]  John E. Johnson,et al.  Natural Nanochemical Building Blocks: Icosahedral Virus Particles Organized by Attached Oligonucleotides , 2004 .

[132]  Johnson,et al.  Adsorbed Layers of Ferritin at Solid and Fluid Interfaces Studied by Atomic Force Microscopy. , 2000, Journal of colloid and interface science.

[133]  John E. Johnson,et al.  An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale. , 2005, Small.

[134]  T. Baker,et al.  In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. , 1995, Virology.

[135]  Dietmar Pum,et al.  The application of bacterial S-layers in molecular nanotechnology , 1999 .

[136]  S. Mann,et al.  Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. , 1995, Journal of inorganic biochemistry.

[137]  Igor L. Medintz,et al.  Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[138]  S H Kim,et al.  Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[139]  N. Steinmetz,et al.  Decoration of cowpea mosaic virus with multiple, redox-active, organometallic complexes. , 2006, Small.

[140]  H. Lilie,et al.  Assessment of cell type specific gene transfer of polyoma virus like particles presenting a tumor specific antibody Fv fragment. , 2002, Journal of virological methods.

[141]  Trevor Douglas,et al.  Host–guest encapsulation of materials by assembled virus protein cages , 1998, Nature.

[142]  A. Hirai,et al.  Intracellular site of assembly of TMV-RNA and protein. , 1967, Virology.

[143]  M. Young,et al.  Protein Cage Constrained Synthesis of Ferrimagnetic Iron Oxide Nanoparticles , 2002 .

[144]  George Georgiou,et al.  Viral assembly of oriented quantum dot nanowires , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[145]  P. Trail,et al.  (6-Maleimidocaproyl)hydrazone of doxorubicin--a new derivative for the preparation of immunoconjugates of doxorubicin. , 1993, Bioconjugate chemistry.

[146]  John E. Johnson,et al.  Comparison of the native CCMV virion with in vitro assembled CCMV virions by cryoelectron microscopy and image reconstruction. , 1998, Virology.

[147]  A. Bittner Biomolecular rods and tubes in nanotechnology , 2005, Naturwissenschaften.

[148]  N. Steinmetz,et al.  Cowpea mosaic virus for material fabrication: addressable carboxylate groups on a programmable nanoscaffold. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[149]  M. Young,et al.  Chemical modification of a viral cage for multivalent presentation. , 2002, Chemical communications.

[150]  M. Francis,et al.  Dual-surface modification of the tobacco mosaic virus. , 2005, Journal of the American Chemical Society.

[151]  T. Diekwisch,et al.  Self-assembly of a recombinant amelogenin protein generates supramolecular structures. , 1994, Journal of Structural Biology.

[152]  K. Kern,et al.  Spatially Selective Nucleation of Metal Clusters on the Tobacco Mosaic Virus , 2004 .

[153]  W. V. Shaw,et al.  Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts , 1991, Nature.

[154]  E. Chiancone,et al.  A Novel Non-heme Iron-binding Ferritin Related to the DNA-binding Proteins of the Dps Family in Listeria innocua* , 1997, The Journal of Biological Chemistry.

[155]  Trevor Douglas,et al.  Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. , 2006, Chemistry & biology.

[156]  P. Butler,et al.  Studies on the assembly of a spherical plant virus. I. States of aggregation of the isolated protein. , 1974, Journal of molecular biology.

[157]  A. Bacher,et al.  Synthesis of Nanophase Iron Oxide in Lumazine Synthase Capsids. , 2001, Angewandte Chemie.

[158]  C. Batt,et al.  Bionanofabrication of ordered nanoparticle arrays: Effect of particle properties and adsorption conditions , 2004 .

[159]  M. Young,et al.  Synthetic control over magnetic moment and exchange bias in all-oxide materials encapsulated within a spherical protein cage. , 2007, Journal of the American Chemical Society.

[160]  V. Rotello,et al.  Quantum dot encapsulation in viral capsids. , 2006, Nano letters.

[161]  U. Sleytr,et al.  Crystalline surface layers on bacteria. , 1983, Annual review of microbiology.

[162]  E. Chiancone,et al.  The so-called Listeria innocua ferritin is a Dps protein. Iron incorporation, detoxification, and DNA protection properties. , 2005, Biochemistry.

[163]  Stephen Mann,et al.  Controlled synthesis of inorganic materials using supramolecular assemblies , 1991 .

[164]  John E. Johnson,et al.  Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. , 2003 .

[165]  Trevor Douglas,et al.  Viruses: Making Friends with Old Foes , 2006, Science.

[166]  M. Young,et al.  2-D array formation of genetically engineered viral cages on au surfaces and imaging by atomic force microscopy. , 2003, Journal of the American Chemical Society.

[167]  Bogdan Dragnea,et al.  Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses. , 2003, Journal of the American Chemical Society.

[168]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[169]  P. Harrison,et al.  The ferritins: molecular properties, iron storage function and cellular regulation. , 1996, Biochimica et biophysica acta.

[170]  Jason Wiggins,et al.  Self assembled nanoparticulate CO:PT for data storage applications , 2000 .

[171]  Surface fabrication of hollow nanoarchitectures of ultrathin titania layers from assembled latex particles and tobacco mosaic viruses as templates , 2003 .

[172]  S. Mann,et al.  Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites , 1996 .

[173]  Petros Koumoutsakos,et al.  Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[174]  Bruce E. Gnade,et al.  Cowpea Mosaic Virus as a Scaffold for 3-D Patterning of Gold Nanoparticles , 2004 .

[175]  M. Finn,et al.  Crosslinking of and coupling to viral capsid proteins by tyrosine oxidation. , 2004, Chemistry & biology.

[176]  V. Rotello,et al.  Nanoparticle-templated assembly of viral protein cages. , 2006, Nano letters.

[177]  R. Kolter,et al.  The crystal structure of Dps, a ferritin homolog that binds and protects DNA , 1998, Nature Structural Biology.