Convergence of the method of fundamental solutions for Poisson’s equation on the unit sphere

AbstractSolutions of boundary value problems of the Laplace equation on the unit sphere are constructed by using the fundamental solution $$\Phi (\bf{x},\bf{y})=\frac{1}{4\pi \|\bf{x}-\bf{y}\|},\qquad \bf{x}, \bf{y}\in R^3.$$With the use of radial basis approximation for finding particular solutions of Poisson's equation, the rate of convergence of the method of fundamental solutions is derived for solving the boundary value problems of Poisson’s equation.

[1]  Xin Li,et al.  Computational Test of Approximation of Functions and Their Derivatives by Radial Basis Functions , 2002, Neural Parallel Sci. Comput..

[2]  Anthony T. Patera,et al.  Spectral collocation methods , 1987 .

[3]  Graeme Fairweather,et al.  The method of fundamental solutions for elliptic boundary value problems , 1998, Adv. Comput. Math..

[4]  Andreas Karageorghis,et al.  Numerical analysis of the method of fundamental solution for harmonic problems in annular domains , 2006 .

[5]  M. Katsurada Charge simulation method using exterior mapping functions , 1994 .

[6]  On the de la Vallée-Poussin Means on the Sphere , 1993 .

[7]  Andreas Karageorghis,et al.  Some Aspects of the Method of Fundamental Solutions for Certain Harmonic Problems , 2002, J. Sci. Comput..

[8]  K. Atkinson The Numerical Evaluation of Particular Solutions for Poisson's Equation , 1985 .

[9]  Xin Li Convergence of the method of fundamental solutions for solving the boundary value problem of modified Helmholtz equation , 2004, Appl. Math. Comput..

[10]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[11]  Hisashi Okamoto,et al.  The collocation points of the fundamental solution method for the potential problem , 1996 .

[12]  Masashi Katsurada,et al.  A mathematical study of the charge simulation method I , 1988 .

[13]  M. Golberg Boundary integral methods : numerical and mathematical aspects , 1999 .

[14]  T. Kitagawa,et al.  On the numerical stability of the method of fundamental solution applied to the Dirichlet problem , 1988 .

[15]  Xin Li,et al.  On convergence of the method of fundamental solutions for solving the Dirichlet problem of Poisson’s equation , 2005, Adv. Comput. Math..

[16]  Carlos Alberto Brebbia,et al.  Transformation of Domain Effects to the Boundary , 2003 .

[17]  A. Bogomolny Fundamental Solutions Method for Elliptic Boundary Value Problems , 1985 .

[18]  Allaberen Ashyralyev,et al.  Partial Differential Equations of Elliptic Type , 2004 .

[19]  Ismael Herrera,et al.  Trefftz Method: A General Theory , 2000 .

[20]  Masashi Katsurada,et al.  Asymptotic error analysis of the charge simulation method in a Jordan region with an analytic boundary , 1990 .

[21]  Xin Li,et al.  Approximation by radial bases and neural networks , 2004, Numerical Algorithms.

[22]  Andreas Karageorghis,et al.  Numerical analysis of the MFS for certain harmonic problems , 2004 .

[23]  Claus Müller Analysis of Spherical Symmetries in Euclidean Spaces , 1997 .

[24]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[25]  Fumihiro Chiba,et al.  A fundamental solution method for the reduced wave problem in a domain exterior to a disc , 2003 .

[26]  M. Golberg,et al.  Discrete projection methods for integral equations , 1996 .

[27]  Bruno Després,et al.  Using Plane Waves as Base Functions for Solving Time Harmonic Equations with the Ultra Weak Variational Formulation , 2003 .