Innovative laser-hardened solid host material for nonlinear filters

We report on the physical and optical characteristics of the laser-hardened, solid-state host material polymer-filled nanoporous glass (PFNPG). PFNPG consists of a nanoporous glass structure (average pore size =~7 - 10 nm and matrix porosity =~38 - 40%) filled with a damage-resistant polymer. We have previously used this material as a host matrix for solid-state dye lasers, and in this study have applied it to nonlinear filters. The objectives were twofold: (1) to fabricate PFNPG samples with a high laser damage threshold under f/5 focusing conditions; and (2) to successfully dope a nonlinear absorbing dye into this matrix at millimolar concentrations. Undoped PFNPG plates showed damage thresholds of =~42 J/cm2, a value significantly higher than that observed for a bulk polymer in the same test bed. PFNPG samples doped with the nonlinear dye Zn-TPP showed even greater damage resistance. Samples with dye concentrations ≥1 mM showed good nonlinear filtering.