A Survey on Spherical Spline

Spline functions that approximate data given on the sphere are developed in a weighted Sobolev space setting. The exibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A convergence theorem containing explicit constants yields a usable error bound. Our survey ends with the discussion of spherical splines in geodetically relevant pseudodiierential equations.

[1]  D. F. Utreras,et al.  Optimal Smoothing of Noisy Data Using Spline Functions , 1981 .

[2]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[3]  Willi Freeden,et al.  An efficient algorithm for the generation of homogeneous harmonic polynomials , 1990 .

[4]  W. Freeden,et al.  Deformation Analysis using Navier Spline Interpolation , 1995 .

[5]  G. Wahba,et al.  Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation , 1980 .

[6]  Hidehiko Yamabe On an extension of the Helly's theorem , 1950 .

[7]  Willi Freeden,et al.  Non-orthogonal expansions on the sphere , 1995 .

[8]  W. Freeden A spline interpolation method for solving boundary value problems of potential theory from discretely given data , 1987 .

[9]  W. Freeden An application of a summation formula to numerical computation of integrals over the sphere , 1978 .

[10]  Edmund Taylor Whittaker On a New Method of Graduation , 1922, Proceedings of the Edinburgh Mathematical Society.

[11]  C. L. Merry,et al.  Towards A Cross-Validated Spherical Spline Geoid for the South-Western Cape, South Africa , 1990 .

[12]  F. Perrin,et al.  Spherical splines for scalp potential and current density mapping. , 1989, Electroencephalography and clinical neurophysiology.

[13]  Willi Freeden,et al.  A Minimum Norm Interpolation Method for Determining the Displacement Field of a Homogeneous Isotropic Elastic Body from Discrete Data , 1990 .

[14]  M. Hutchinson,et al.  Smoothing noisy data with spline functions , 1985 .

[15]  Willi Freeden,et al.  Spherical spline interpolation—basic theory and computational aspects , 1984 .

[16]  F. Sansò,et al.  Gravitational Field Determination , 1996 .

[17]  C. Reinsch Smoothing by spline functions , 1967 .

[18]  W. Freeden,et al.  Uniform approximation by spherical spline interpolation , 1986 .

[19]  J. Hoschek,et al.  Scattered Data Interpolation , 1992 .

[20]  R. Rapp Potential Coefficient and Anomaly Degree Variance Modelling Revisited , 1979 .

[21]  Michael Schreiner Uniqueness Problems in Satellite Gradiometry , 1996 .

[22]  Grace Wahba,et al.  Vector Splines on the Sphere, with Application to the Estimation of Vorticity and Divergence from Discrete, Noisy Data , 1982 .

[23]  I J Schoenberg,et al.  SPLINE FUNCTIONS AND THE PROBLEM OF GRADUATION. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[24]  L. Eldén A note on the computation of the generalized cross-validation function for ill-conditioned least squares problems , 1984 .

[25]  G. Wahba Spline models for observational data , 1990 .

[26]  E. Hobson The Theory of Spherical and Ellipsoidal Harmonics , 1955 .

[27]  H. J. Taijeron,et al.  Spline Interpolation and Smoothing on Hyperspheres , 1994, SIAM J. Sci. Comput..

[28]  Robert J. Renka,et al.  Interpolation of data on the surface of a sphere , 1984, TOMS.

[29]  R. Franke,et al.  Generalized Weighted Spline Approximation on the Sphere , 1993 .

[30]  W. Freeden Spherical Spline Approximation and its Application in Physical Geodesy , 1990 .

[31]  Willi Freeden,et al.  On the Permanence Property in Spherical Spline Interpolation , 1982 .

[32]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[33]  T. H. Gronwall On the degree of convergence of Laplace’s series , 1914 .

[34]  Hans-Jürgen Schaffeld Eine Finite-Elemente-Methode und ihre Anwendung zur Erstellung von digitalen Geländemodellen , 1988 .

[35]  Chong Gu,et al.  Minimizing GCV/GML Scores with Multiple Smoothing Parameters via the Newton Method , 1991, SIAM J. Sci. Comput..

[36]  F. Utreras Recent Results on Multivariate Smoothing Splines , 1990 .

[37]  T. A. Foley Interpolation of scattered data on a spherical domain , 1990 .

[38]  Richard Franke,et al.  The use of observed data for the initial-value problem in numerical weather prediction , 1988 .

[39]  M. Schreiner On a new condition for strictly positive definite functions on spheres , 1997 .

[40]  Dieter Lasser,et al.  Grundlagen der geometrischen Datenverarbeitung , 1989 .

[41]  D. Ragozin Error bounds for derivative estimates based on spline smoothing of exact or noisy data , 1983 .

[42]  Willi Freeden,et al.  A combined (spline-) interpolation and smoothing method for the determination of the external gravitational potential from heterogeneous data , 1982 .

[43]  G. Wahba,et al.  A completely automatic french curve: fitting spline functions by cross validation , 1975 .

[44]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[45]  Vector spherical spline interpolation , 1989 .

[46]  Reiner Rummel,et al.  Gravity field determination from satellite gradiometry , 1985 .

[47]  Richard Franke,et al.  Recent Advances in the Approximation of surfaces from scattered Data , 1987, Topics in Multivariate Approximation.

[48]  Willi Freeden,et al.  Tensor Spherical Harmonics and Tensor Spherical Splines , 1993 .

[49]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[50]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[51]  S.Leif Svensson,et al.  Finite elements on the sphere , 1984 .

[52]  W. Freeden Stokes' boundary-value problem of physical geodesy and its numerical computation. , 1978 .

[53]  D. Gershfeld,et al.  Special functions for engineers and applied mathematicians , 1986, IEEE Journal of Oceanic Engineering.

[54]  A. Girard A fast ‘Monte-Carlo cross-validation’ procedure for large least squares problems with noisy data , 1989 .

[55]  G. Wahba Spline Interpolation and Smoothing on the Sphere , 1981 .

[56]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[57]  E. Groten,et al.  New results obtained for detailed geoid approximations , 1986 .

[58]  W. Freeden,et al.  On spherical spline interpolation and approximation , 1981 .

[59]  George E. Backus,et al.  Harmonic splines for geomagnetic modelling , 1982 .

[60]  E. Groten,et al.  Precise geoid computations at mountaineous coastlines in view of vertical Datum determinations. , 1985 .

[61]  Helmut Pottmann,et al.  Modified multiquadric methods for scattered data interpolation over a sphere , 1990, Comput. Aided Geom. Des..

[62]  Deformation analysis using Navier spline interpolation ( with an application to the Lake Blasjo Area) , 1995 .

[63]  Dennis D Cox,et al.  Convergence Rates for Multivariate Smoothing Spline Functions. , 1982 .

[64]  Eugene P. Wigner,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1966 .

[65]  G. Wahba Surface fitting with scattered noisy data on Euclidean D-space and on the sphere , 1984 .

[66]  E. Grafarend Three-dimensional deformation analysis: Global vector spherical harmonic and local finite element representation , 1986 .

[67]  M. Schreiner Locally Supported Kernels for Spherical Spline Interpolation , 1997 .

[68]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[69]  J. Mason,et al.  Uniform piecewise approximation on the sphere , 1990 .

[70]  W. Freeden,et al.  Vector spherical spline interpolation—basic theory and computational aspects , 1993 .