Monolithic integration of a GaInAs p-i-n photodiode and an optical waveguide: modeling and realization using chloride vapor phase epitaxy

A theoretical and experimental study is discussed of a p-i-n GaInAs photodiode integrated with inverted-rib InP or GaInAsP waveguides grown on InP substrate. The coupling efficiency between the waveguide and the photodiode is calculated using the beam-propagation method while the initial condition, i.e. the waveguide eigenmode, is calculated by the finite-difference method. The photodiode absorption is calculated as a function of key design parameters, which are the waveguide dimensions, the wavelength and, in the case of heterostructure waveguide, the composition of the quaternary layer. Two classes of device application are foreseen: monitor photodiode and end line receiver. >

[1]  R. Newman,et al.  Optical Properties of n-Type InP , 1958 .

[2]  M. D. Feit,et al.  Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method. , 1980, Applied optics.

[3]  M. Erman,et al.  Structural analysis and optical characterization of low GaAs waveguides fabricated by selective epitaxy , 1985 .

[4]  D. Aspnes,et al.  Optical properties of In 1-x Ga x As y P 1-y from 1.5 to 6.0 eV determined by spectroscopic ellipsometry , 1982 .

[5]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[6]  Osamu Wada,et al.  Recent progress in optoelectric integrated circuits (OEIC's) , 1986 .

[7]  John M. Zavada,et al.  Characterization and Optimization of Proton Implanted Optical (1.15 µm) GaAs Waveguides , 1983, Other Conferences.

[8]  A. Schlachetzki,et al.  Optical parameters of InP-based waveguides , 1987 .

[9]  W. Bonner,et al.  Infrared reflectance and absorption of N-type InP , 1983 .

[10]  W. Walukiewicz,et al.  Electron mobility and free‐carrier absorption in InP; determination of the compensation ratio , 1979 .

[11]  M. Feit,et al.  Comparison of calculated and measured performance of diffused channel-waveguide couplers , 1983 .

[12]  R. L. Barns,et al.  Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP , 1978 .

[13]  David Yevick,et al.  Beam-propagation analysis of loss in bent optical waveguides and fibers , 1983 .

[14]  Carsten Bornholdt,et al.  Waveguide-integrated pin photodiode on InP , 1987 .

[15]  H. Namizaki,et al.  Ten-thousand-hour operation of crank transverse-junction-stripe lasers grown by metal-organic chemical vapor deposition , 1986 .

[16]  J. Gentner,et al.  Control of interface formation during growth of InGaAs/InP heterostructures by chloride vapour phase epitaxy , 1986 .

[17]  Yoshimasa Sugimoto,et al.  Gigahertz-bandwidth InGaAsP/InP optical modulators/switches with double-hetero waveguides , 1984 .

[18]  Paul Lagasse,et al.  Beam-propagation method: analysis and assessment , 1981 .

[19]  N. Vodjdani,et al.  III-V Semiconductor Waveguides And Phase-Modulators : The Localized Vapor Phase Epitaxy Approach , 1986, Other Conferences.

[20]  B. Broberg,et al.  Refractive index of In1−xGaxAsyP1−y layers and InP in the transparent wavelength region , 1984 .

[21]  A. Carenco,et al.  Optical bistability using a directional coupler and a detector monolithically integrated in GaAs , 1980 .

[22]  A. Glass,et al.  Double doped low etch pit density InP with reduced optical absorption , 1983 .

[23]  John E. Bowers,et al.  High-speed zero-bias waveguide photodetectors , 1986 .

[24]  G. Stewart Optical Waveguide Theory , 1983, Handbook of Laser Technology and Applications.

[25]  P. Jarry,et al.  Optical and electrooptical analysis of GaAs inverted rib phase modulators grown by vapor phase epitaxy , 1986 .