Development and Investigation of a NASICON‐Type High‐Voltage Cathode Material for High‐Power Sodium‐Ion Batteries

[1]  Xiao-dong Guo,et al.  Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries , 2019, Energy Storage Materials.

[2]  S. Dou,et al.  NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density , 2019, Nature Communications.

[3]  Xiao-dong Guo,et al.  High‐Abundance and Low‐Cost Metal‐Based Cathode Materials for Sodium‐Ion Batteries: Problems, Progress, and Key Technologies , 2019, Advanced Energy Materials.

[4]  M. Deschamps,et al.  Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material , 2019, Nature Communications.

[5]  Xinping Ai,et al.  3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries , 2019, Nano Energy.

[6]  Qiannan Liu,et al.  Ultrathin 2D TiS2 Nanosheets for High Capacity and Long‐Life Sodium Ion Batteries , 2019, Advanced Energy Materials.

[7]  Zhen-guo Wu,et al.  Organic Cross‐Linker Enabling a 3D Porous Skeleton–Supported Na 3 V 2 (PO 4 ) 3 /Carbon Composite for High Power Sodium‐Ion Battery Cathode , 2018, Small Methods.

[8]  M. Pasta,et al.  Prussian Blue Analogs as Battery Materials , 2018, Joule.

[9]  P. Barpanda,et al.  An Overview of Mixed Polyanionic Cathode Materials for Sodium‐Ion Batteries , 2018, Small Methods.

[10]  Yong‐Mook Kang,et al.  All Carbon Dual Ion Batteries. , 2018, ACS applied materials & interfaces.

[11]  D. Cortie,et al.  A Novel Graphene Oxide Wrapped Na2Fe2(SO4)3/C Cathode Composite for Long Life and High Energy Density Sodium‐Ion Batteries , 2018, Advanced Energy Materials.

[12]  Mei Yang,et al.  Highly doped graphene with multi-dopants for high-capacity and ultrastable sodium-ion batteries , 2018, Energy Storage Materials.

[13]  Xiaobo Ji,et al.  Tailoring Rod‐Like FeSe2 Coated with Nitrogen‐Doped Carbon for High‐Performance Sodium Storage , 2018, Advanced Functional Materials.

[14]  B. Dunn,et al.  Sodium Vanadium Fluorophosphates (NVOPF) Array Cathode Designed for High‐Rate Full Sodium Ion Storage Device , 2018 .

[15]  Xiao‐Qing Yang,et al.  Li3VP3O9N as a Multielectron Redox Cathode for Li-Ion Battery , 2018 .

[16]  K. Kang,et al.  Na3V(PO4)2: a new layered-type cathode material with high water stability and power capability for Na-ion batteries , 2018 .

[17]  Xianghui Xiao,et al.  A Fully Sodiated NaVOPO4 with Layered Structure for High-Voltage and Long-Lifespan Sodium-Ion Batteries , 2018 .

[18]  W. Park,et al.  KVP2O7 as a Robust High‐Energy Cathode for Potassium‐Ion Batteries: Pinpointed by a Full Screening of the Inorganic Registry under Specific Search Conditions , 2018 .

[19]  Jun Lu,et al.  Batteries and fuel cells for emerging electric vehicle markets , 2018 .

[20]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[21]  J. Carrasco,et al.  Sodium vanadium nitridophosphate Na3V(PO3)3N as a high-voltage positive electrode material for Na-ion and Li-ion batteries , 2017 .

[22]  K. Kang,et al.  New 4V-Class and Zero-Strain Cathode Material for Na-Ion Batteries , 2017 .

[23]  S. Passerini,et al.  Synthesis, structure, and sodium mobility of sodium vanadium nitridophosphate : A zero-strain and safe high voltage cathode material for sodium-ion batteries , 2017 .

[24]  Yong‐Sheng Hu,et al.  Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan , 2017, Nature Communications.

[25]  Chao Wu,et al.  A High Power–High Energy Na3V2(PO4)2F3 Sodium Cathode: Investigation of Transport Parameters, Rational Design and Realization , 2017 .

[26]  Zhe Hu,et al.  Carbon‐Coated Na3.32Fe2.34(P2O7)2 Cathode Material for High‐Rate and Long‐Life Sodium‐Ion Batteries , 2017, Advanced materials.

[27]  Bingbing Tian,et al.  "Electron/Ion Sponge"-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries. , 2017, ACS nano.

[28]  Q. Yan,et al.  Advanced Cathode Materials for Sodium-Ion Batteries: What Determines Our Choices? , 2017 .

[29]  John B Goodenough,et al.  NaxMV(PO4)3 (M = Mn, Fe, Ni) Structure and Properties for Sodium Extraction. , 2016, Nano letters.

[30]  Hui Li,et al.  Double-Nanocarbon Synergistically Modified Na3V2(PO4)3: An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[31]  S. Ong,et al.  Molybdenum Substituted Vanadyl Phosphate ε-VOPO4 with Enhanced Two-Electron Transfer Reversibility and Kinetics for Lithium-Ion Batteries , 2016 .

[32]  K. Kang,et al.  Tailoring a New 4V‐Class Cathode Material for Na‐Ion Batteries , 2016 .

[33]  Lele Peng,et al.  Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage. , 2016, Nano letters.

[34]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[35]  Yongwon Lee,et al.  Cyclic carbonate based-electrolytes enhancing the electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes for sodium-ion batteries , 2014 .

[36]  Anton Van der Ven,et al.  Ionic conduction in cubic Na3TiP3O9N, a secondary Na-ion battery cathode with extremely low volume change , 2014 .

[37]  Seung M. Oh,et al.  Na4‐αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): A Promising Sodium Ion Cathode for Na‐ion Batteries , 2013 .

[38]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[39]  M. Armand,et al.  Building better batteries , 2008, Nature.

[40]  Vladislav A. Blatov,et al.  Crystallochemical tools in the search for cathode materials of rechargeable Na-ion batteries and analysis of their transport properties , 2018 .

[41]  P. Balaya,et al.  NaVPO4F with high cycling stability as a promising cathode for sodium-ion battery , 2018 .

[42]  Arumugam Manthiram,et al.  Progress in High‐Voltage Cathode Materials for Rechargeable Sodium‐Ion Batteries , 2018 .