Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures.

We study nonlinear waves in a two-layered imperfectly bonded structure using a nonlinear lattice model. The key element of the model is an anharmonic chain of oscillating dipoles, which can be viewed as a basic lattice analog of a one-dimensional macroscopic waveguide. Long nonlinear longitudinal waves in a layered lattice with a soft middle (or bonding) layer are governed by a system of coupled Boussinesq-type equations. For this system we find conservation laws and show that pure solitary waves, which exist in a single equation and can exist in the coupled system in the symmetric case, are structurally unstable and are replaced with generalized solitary waves.

[1]  I. Semenova,et al.  Comparison of the effect of cyanoacrylate-and polyurethane-based adhesives on a longitudinal strain solitary wave in layered polymethylmethacrylate waveguides , 2008 .

[2]  Roux,et al.  Fracture of disordered, elastic lattices in two dimensions. , 1989, Physical review. B, Condensed matter.

[3]  J. Thomas Beale,et al.  Exact solitary water waves with capillary ripples at infinity , 1991 .

[4]  R. Grimshaw,et al.  The generation of radiating waves in a singularly-perturbed Korteweg-de Vries equation , 1993 .

[5]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[6]  A. S. Zakharov,et al.  Nonlinear long-wave models for imperfectly bonded layered waveguides , 2009 .

[7]  Gulcin M. Muslu,et al.  A split-step Fourier method for the complex modified Korteweg-de Vries equation☆ , 2003 .

[8]  J. Vanden-Broeck Elevation solitary waves with surface tension , 1991 .

[9]  A. Movchan,et al.  Steady-state motion of a mode-III crack on imperfect interfaces , 2006 .

[10]  Eric Lombardi,et al.  Oscillatory Integrals and Phenomena Beyond all Algebraic Orders: with Applications to Homoclinic Orbits in Reversible Systems , 2000 .

[11]  S. Sun Existence of a generalized solitary wave solution for water with positive bond number less than 13 , 1991 .

[12]  Yuri S. Kivshar,et al.  The Frenkel-Kontorova Model: Concepts, Methods, and Applications , 2004 .

[13]  L. Brillouin,et al.  Wave Propagation in Periodic Structures , 1946 .

[14]  The extended Frenkel-Kontorova model and its application to the problems of brittle fracture and adhesive failure , 1993 .

[15]  Francis D. Murnaghan,et al.  Finite Deformation of an Elastic Solid , 1967 .

[16]  A. Porubov Amplification of nonlinear strain waves in solids , 2003 .

[17]  K. Khusnutdinova,et al.  Fission of a longitudinal strain solitary wave in a delaminated bar. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  P. Español,et al.  Mechanisms for dynamic crack branching in brittle elastic solids: strain field kinematics and reflected surface waves. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  J. K. Hunter,et al.  Solitary and periodic gravity—capillary waves of finite amplitude , 1983, Journal of Fluid Mechanics.

[20]  Yuri S. Kivshar,et al.  The Frenkel-Kontorova Model , 2004 .

[21]  S. Suresh,et al.  Fundamentals of functionally graded materials , 1998 .

[22]  Roger Grimshaw,et al.  Weakly Nonlocal Solitary Waves in a Singularly Perturbed Korteweg-De Vries Equation , 1995, SIAM J. Appl. Math..

[23]  The effect of the discreteness of the Atomic structure on cleavage crack e xtension: Use of a simple one-dimensional mode II , 1977 .

[24]  C. Christov,et al.  Well-posed Boussinesq paradigm with purely spatial higher-order derivatives. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Attila Askar,et al.  Lattice dynamical foundations of continuum theories , 1986 .

[26]  B. Malomed,et al.  Embedded solitons : solitary waves in resonance with the linear spectrum , 2000, nlin/0005056.

[27]  R. Phillips,et al.  Crystals, Defects and Microstructures: Modeling Across Scales , 2001 .

[28]  V. Shrira,et al.  On radiating solitons in a model of the internal wave–shear flow resonance , 2006, Journal of Fluid Mechanics.

[29]  K. Khusnutdinova Coupled Klein–Gordon equations and energy exchange in two-component systems , 2007 .

[30]  A. M. Wahl Finite deformations of an elastic solid: by Francis D. Murnaghan. 140 pages, 15 × 23 cm. New York, John Wiley & Sons, Inc., 1951. Price, $4.00 , 1952 .

[31]  T. Kawahara,et al.  Strongly nonlinear envelope soliton in a lattice model for periodic structure , 2001 .

[32]  Leonid I. Slepyan,et al.  Models and Phenomena in Fracture Mechanics , 2002 .

[33]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[34]  Kevin T. Turner,et al.  Friction laws at the nanoscale , 2009, Nature.

[35]  B. M. Fulk MATH , 1992 .

[36]  R. Grimshaw,et al.  Generalized solitary waves and fronts in coupled Korteweg–de Vries systems , 2005 .

[37]  Gérard A. Maugin,et al.  Strain Solitons in Solids and How to Construct Them , 2020 .

[38]  J. Janno,et al.  Solitary waves in nonlinear microstructured materials , 2005 .

[39]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[40]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[41]  H. Kolsky,et al.  Dynamics of vibrations , 1965 .

[42]  William G. Hoover,et al.  Microscopic fracture studies in the two-dimensional triangular lattice , 1976 .

[43]  R. Grimshaw,et al.  Modulational instability of two pairs of counter-propagating waves and energy exchange in a two-component system , 2005, nlin/0503047.

[44]  James Shipman,et al.  Wave Motion , 2006 .

[45]  Nonlinear dynamics of zigzag molecular chains , 1999 .

[46]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .

[47]  Roger Grimshaw,et al.  Solitary waves of a coupled Korteweg-de Vries system , 2003, Math. Comput. Simul..

[48]  Vikram Deshpande,et al.  The compressive and shear responses of corrugated and diamond lattice materials , 2006 .

[49]  B. Henderson-Sellers,et al.  Mathematics and Computers in Simulation , 1995 .

[50]  A. I. Potapov,et al.  Anharmonic interactions of elastic and orientational waves in one-dimensional crystals , 1997 .

[51]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[52]  G. Maugin Nonlinear Waves in Elastic Crystals , 2000 .

[53]  P. Kevrekidis,et al.  Generalized neighbor-interaction models induced by nonlinear lattices. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[55]  M. Toda Vibration of a Chain with Nonlinear Interaction , 1967 .

[56]  Vladimir E. Zakharov,et al.  A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .

[57]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[58]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[59]  J. Boyd Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics , 1998 .

[60]  A. Movchan,et al.  Dynamical extraction of a single chain from a discrete lattice , 2008 .

[61]  Randall J. LeVeque,et al.  Solitary Waves in Layered Nonlinear Media , 2003, SIAM J. Appl. Math..

[62]  A. Bishop,et al.  Nonlinear lattices generated from harmonic lattices with geometric constraints , 2004, nlin/0412052.

[63]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .