Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results
暂无分享,去创建一个
[1] Josep Sarrate,et al. A POSTERIORI FINITE ELEMENT ERROR BOUNDS FOR NON-LINEAR OUTPUTS OF THE HELMHOLTZ EQUATION , 1999 .
[2] Edward N. Tinoco,et al. Summary of Data from the Second AIAA CFD Drag Prediction Workshop (Invited) , 2004 .
[3] Ivo Babuška,et al. The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .
[4] Dimitri J. Mavriplis,et al. Adaptive mesh generation for viscous flows using delaunay triangulation , 1990 .
[5] M. Wheeler,et al. Anisotropic and dynamic mesh adaptation for discontinuous Galerkin methods applied to reactive transport , 2006 .
[6] Mathias Wintzer,et al. Adjoint-Based Adaptive Mesh Refinement for Complex Geometries , 2008 .
[7] Paul-Louis George,et al. Mailleur bidimensionnel de Delaunay gouverné par une carte de métriques. Partie II: Applications , 1995 .
[8] Jonathan Richard Shewchuk,et al. Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..
[9] D. Venditti,et al. Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow , 2000 .
[10] J. W. Purvis,et al. Prediction of critical Mach number for store configurations , 1979 .
[11] Ralf Hartmann,et al. Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations II: Goal--Oriented A Posteriori Error Estimation , 2005 .
[12] Thomas Sonar,et al. On a second order residual estimator for numerical schemes for nonlinear hyperbolic conservation laws , 2001 .
[13] Hantaek Bae. Navier-Stokes equations , 1992 .
[14] Rolf Rannacher,et al. Adaptive Galerkin finite element methods for partial differential equations , 2001 .
[15] Steven M. Klausmeyer,et al. Data summary from the first AIAA Computational Fluid Dynamics Drag Prediction Workshop , 2003 .
[16] J. Eric,et al. Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations , 1998 .
[17] Antonio Huerta,et al. The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations , 2006 .
[18] Dimitri J. Mavriplis,et al. UNSTRUCTURED MESH GENERATION AND ADAPTIVITY , 1995 .
[19] Endre Süli,et al. The Adaptive Computation of Far-Field Patterns by A Posteriori Error Estimation of Linear Functionals , 1998 .
[20] Juan J. Alonso,et al. Mesh Adaptation Criteria for Unsteady Periodic Flows Using a Discrete Adjoint Time-Spectral Formulation , 2006 .
[21] D. Scott McRae,et al. r-Refinement grid adaptation algorithms and issues , 2000 .
[22] Ivo Babuška,et al. The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .
[23] Rolf Jeltsch,et al. A Higher-Order Boundary Treatment for Cartesian-Grid Methods , 1998 .
[24] Olivier Pironneau,et al. Mesh adaption and automatic differentiation in a CAD-free framework for optimal shape design , 1999 .
[25] Mark Ainsworth,et al. An adaptive refinement strategy for hp -finite element computations , 1998 .
[26] M. Giles,et al. Adjoint equations in CFD: duality, boundary conditions and solution behaviour , 1997 .
[27] A. Peirce. Computer Methods in Applied Mechanics and Engineering , 2010 .
[28] Dominique Pelletier,et al. Error control and mesh adaptation for the Euler equations , 2001 .
[29] Bruno Després,et al. Lax theorem and finite volume schemes , 2003, Math. Comput..
[30] David L. Darmofal,et al. Output-based Adaptive Meshing Using Triangular Cut Cells , 2006 .
[31] E. Süli,et al. A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .
[32] Haihang You,et al. Adaptive Discontinuous Galerkin Finite Element Methods , 2009 .
[33] P. Jimack,et al. Toward anisotropic mesh adaption based upon sensitivity of a posteriori estimates , 2022 .
[34] W. K. Anderson,et al. Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation , 1997 .
[35] D. Venditti,et al. Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .
[36] Garrett. Barter,et al. Shock Capturing with PDE-Based Artificial Viscosity for an Adaptive, Higher-Order Discontinuous Galerkin Finite Element Method , 2008 .
[37] Michael Andrew Park,et al. Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation , 2002 .
[38] Rainald Löhner,et al. COMPARISON OF BODY-FITTED, EMBEDDED AND IMMERSED SOLUTIONS OF LOW REYNOLDS-NUMBER 3-D INCOMPRESSIBLE FLOWS , 2008 .
[39] Mary F. Wheeler,et al. Mesh Adaptation Strategies for Discontinuous Galerkin Methods Applied to Reactive Transport Problems , 2004 .
[40] J. Alonso,et al. ADjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers , 2006 .
[41] Thomas Richter,et al. A posteriori error estimation and anisotropy detection with the dual‐weighted residual method , 2010 .
[42] Josef Stoer,et al. Numerische Mathematik 1 , 1989 .
[43] Michael B. Giles,et al. Analytic adjoint solutions for the quasi-one-dimensional Euler equations , 2001, Journal of Fluid Mechanics.
[44] O. C. Zienkiewicz,et al. Adaptivity and mesh generation , 1991 .
[45] B. Wedan,et al. A method for solving the transonic full-potential equation for general configurations , 1983 .
[46] J. Peraire,et al. Computing upper and lower bounds for the J-integral in two-dimensional linear elasticity , 2006 .
[47] Michael Andrew Park,et al. Anisotropic output-based adaptation with tetrahedral cut cells for compressible flows , 2008 .
[48] Michael B. Giles,et al. Solution Adaptive Mesh Refinement Using Adjoint Error Analysis , 2001 .
[49] R. Verfiirth. A posteriori error estimation and adaptive mesh-refinement techniques , 2001 .
[50] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[51] James Lu,et al. An a posteriori Error Control Framework for Adaptive Precision Optimization using Discontinuous Galerkin Finite Element Method , 2005 .
[52] C. J. Roy. Strategies for Driving Mesh Adaptation in CFD (Invited) , 2009 .
[53] P. D. Frank,et al. A comparison of two closely-related approaches to aerodynamic design optimization , 1991 .
[54] Michael B. Giles,et al. Adjoint and defect error bounding and correction for functional estimates , 2003 .
[55] H. Elman,et al. DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS , 2008 .
[56] Dimitri J. Mavriplis,et al. Discrete Adjoint Based Time-Step Adaptation and Error Reduction in Unsteady Flow Problems , 2007 .
[57] Richard P. Dwight,et al. Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation , 2008, J. Comput. Phys..
[58] Joseph H. Morrison,et al. Statistical Analysis of CFD Solutions from the Third AIAA Drag Prediction Workshop (Invited) , 2007 .
[59] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[60] Per-Olof Persson,et al. Curved mesh generation and mesh refinement using Lagrangian solid mechanics , 2008 .
[61] Endre Süli,et al. The importance of adjoint consistency in the approximation of linear functionals using the discontinuous Galerkin finite element method , 2004 .
[62] Simona Perotto,et al. An anisotropic a-posteriori error estimate for a convection-diffusion problem , 2001 .
[63] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[64] D. Darmofal,et al. An implicit, exact dual adjoint solution method for turbulent flows on unstructured grids , 2004 .
[65] Barna A. Szabó,et al. Estimation and Control Error Based on P-Convergence, , 1984 .
[66] Anthony T. Patera,et al. Asymptotic a Posteriori Finite Element Bounds for the Outputs of Noncoercive Problems: the Helmholtz , 1999 .
[67] M. Giles,et al. Algorithm Developments for Discrete Adjoint Methods , 2003 .
[68] Jaime Peraire,et al. Implicit A-Posteriori Bounds for Discontinuous Galerkin Methods , 2003 .
[69] Frédéric Hecht,et al. Anisotropic unstructured mesh adaption for flow simulations , 1997 .
[70] Mark S. Gockenbach. Adaptive Mesh Generation , 2006 .
[71] John C. Vassberg,et al. Grid Generation Requirements for Accurate Drag Predictions Based on OVERFLOW Calculations , 2003 .
[72] Gustavo C. Buscaglia,et al. Anisotropic mesh optimization and its application in adaptivity , 1997 .
[73] D. Venditti,et al. Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .
[74] Mark S. Shephard,et al. Accounting for curved domains in mesh adaptation , 2003 .
[75] Mats G. Larson,et al. A posteriori eror estimation for higher order Godunov finite volume methods on unstructured meshes , 2002 .
[76] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[77] Mathematisches Forschungsinstitut Oberwolfach,et al. Hyperbolic Conservation Laws , 2004 .
[78] J. Oden,et al. Goal-oriented error estimation and adaptivity for the finite element method , 2001 .
[79] Charles L. Merkle,et al. Anisotropic Grid Adaptation on Unstructured Meshes , 2001 .
[80] Endre Süli,et al. hp-Adaptive Discontinuous Galerkin Finite Element Methods for First-Order Hyperbolic Problems , 2001, SIAM J. Sci. Comput..
[81] T. Barth,et al. Error estimation and adaptive discretization methods in computational fluid dynamics , 2003 .
[82] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .
[83] K. Duraisamy,et al. Error Estimation for High Speed Flows Using Continuous and Discrete Adjoints , 2010 .
[84] Ralf Hartmann,et al. Error Estimation and Adaptive Mesh Refinement for Aerodynamic Flows , 2010 .
[85] Thomas Sonar. Strong and Weak Norm Refinement Indicators Based on the Finite Element Residual for Compressible Flow Computation : I. The Steady Case , 1993, IMPACT Comput. Sci. Eng..
[86] Paul-Louis George,et al. Mailleur bidimensionnel de Delaunay gouverné par une carte de métriques. Partie I: Algorithmes , 1995 .
[87] Alberto Bressan. Hyperbolic Conservation Laws , 2009, Encyclopedia of Complexity and Systems Science.
[88] Elizabeth M. Lee-Rausch,et al. Application of Parallel Adjoint-Based Error Estimation and Anisotropic Grid Adaptation for Three-Dimensional Aerospace Configurations , 2005 .
[89] Rolf Rannacher,et al. Duality-based adaptivity in the hp-finite element method , 2003, J. Num. Math..
[90] Joseph H. Morrison. Statistical Analysis of CFD Solutions from the Fourth AIAA Drag Prediction Workshop , 2010 .
[91] Dimitri J. Mavriplis,et al. Results from the 3rd Drag Prediction Workshop Using the NSU3D Unstructured Mesh Solver , 2007 .
[92] D. D. Zeeuw,et al. An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .
[93] Ralf Hartmann,et al. Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..
[94] Endre Süli,et al. Sobolev Regularity Estimation for hp-Adaptive Finite Element Methods , 2003 .
[95] Kunibert G. Siebert,et al. An a posteriori error estimator for anisotropic refinement , 1996 .
[96] Phillip Colella,et al. A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .
[97] Michael Andrew Park,et al. Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation , 2004 .
[98] Michael A. Park,et al. Three-Dimensional Turbulent RANS Adjoint-Based Error Correction , 2003 .
[99] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[100] Jens-Dominik Müller,et al. On the performance of discrete adjoint CFD codes using automatic differentiation , 2005 .
[101] David L. Darmofal,et al. An adaptive simplex cut-cell method for discontinuous Galerkin discretizations of the Navier-Stokes equations , 2007 .
[102] Thomas Sonar,et al. Dynamic adaptivity and residual control in unsteady compressible flow computation , 1994 .
[103] Jaime Peraire,et al. Computing Bounds for Linear Functionals of Exact Weak Solutions to the Advection-Diffusion-Reaction Equation , 2005, SIAM J. Sci. Comput..
[104] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[105] Edward N. Tinoco,et al. Data Summary from Second AIAA Computational Fluid Dynamics Drag Prediction Workshop , 2003 .
[106] T. Pulliam,et al. Adjoint Formulation for an Embedded-Boundary Cartesian Method , 2005 .
[107] David L. Darmofal,et al. Parallel Anisotropic Tetrahedral Adaptation , 2008 .
[108] J. Peraire,et al. A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .
[109] I. Babuška,et al. Theh, p andh-p versions of the finite element method in 1 dimension , 1986 .
[110] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[111] Ralf Hartmann,et al. Adjoint Consistency Analysis of Discontinuous Galerkin Discretizations , 2007, SIAM J. Numer. Anal..
[112] K. Powell,et al. Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows , 1996 .
[113] J. Oden,et al. hp-Version discontinuous Galerkin methods for hyperbolic conservation laws , 1996 .
[114] Carl Ollivier-Gooch,et al. Tetrahedral mesh improvement using swapping and smoothing , 1997 .
[115] Anthony T. Patera,et al. A posteriori finite-element output bounds for the incompressible Navier-Stokes equations: application to a natural convection problem , 2001 .
[116] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[117] Michael B. Giles,et al. Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..
[118] O. C. Zienkiewicz,et al. Adaptive remeshing for compressible flow computations , 1987 .
[119] Antony Jameson,et al. OPTIMAL CONTROL OF UNSTEADY FLOWS USING A TIME ACCURATE METHOD , 2002 .
[120] Dimitri J. Mavriplis,et al. Unsteady Discrete Adjoint Formulation for Two-Dimensional Flow Problems with Deforming Meshes , 2008 .
[121] I. Babuska,et al. The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .
[122] David W. Zingg,et al. A General Framework for the Optimal Control of Unsteady Flows with Applications , 2007 .
[123] Michael B. Giles,et al. Improved- lift and drag estimates using adjoint Euler equations , 1999 .
[124] I. Babuska,et al. Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .
[125] Endre Süli,et al. Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow , 1997 .
[126] Timothy J. Baker,et al. Mesh adaptation strategies for problems in fluid dynamics , 1997 .
[127] M. D. Salas,et al. Euler calculations for multielement airfoils using Cartesian grids , 1986 .
[128] M. Aftosmis. Solution adaptive cartesian grid methods for aerodynamic flows with complex geometries , 1997 .
[129] David Anthony Venditti,et al. Grid adaptation for functional outputs of compressible flow simulations , 2000 .
[130] Steve L. Karman,et al. SPLITFLOW - A 3D unstructured Cartesian/prismatic grid CFD code for complex geometries , 1995 .
[131] Peter K. Moore,et al. Applications of Lobatto polynomials to an adaptive finite element method: A posteriori error estimates for HP-Adaptivity and Grid-to-Grid Interpolation , 2003, Numerische Mathematik.
[132] Juan R. Cebral,et al. Comparison of Body-Fitted, Embedded and Immersed Solutions of Low Reynolds-Number Incompressible Flows , 2007 .
[133] Carl Ollivier-Gooch,et al. A generalized framework for high order anisotropic mesh adaptation , 2009 .
[134] J. C. Newman,et al. Adjoint-based error estimation and grid adaptation for functional outputs: Application to two-dimensional, inviscid, incompressible flows , 2009 .
[135] Leszek Demkowicz,et al. Toward a universal adaptive finite element strategy part 3. design of meshes , 1989 .
[136] M. Berger,et al. Automatic adaptive grid refinement for the Euler equations , 1985 .
[137] R. Rannacher,et al. A posteriori error analysis for stabilised finite element approximations of transport problems , 2000 .
[138] Antony Jameson,et al. Aerodynamic design via control theory , 1988, J. Sci. Comput..
[139] David L. Darmofal,et al. Impact of Turbulence Model Irregularity on High-Order Discretizations , 2009 .
[140] R. Hartmann,et al. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .
[141] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[142] Dimitri J. Mavriplis,et al. An Unsteady Discrete Adjoint Formulation for Two-Dimensional Flow Problems with Deforming Meshes , 2007 .
[143] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .
[144] Class Johnson,et al. On computatbility and error control in CFD , 1995 .
[145] Paul Houston,et al. Adaptivity and A Posteriori Error Estimation For DG Methods on Anisotropic Meshes , 2006 .
[146] Ivo Babuška,et al. Accuracy estimates and adaptive refinements in finite element computations , 1986 .
[147] Michael J. Aftosmis,et al. Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded Boundaries , 2002 .
[148] Leszek Demkowicz,et al. Toward a universal h-p adaptive finite element strategy , 1989 .
[149] A. Dervieux,et al. Exact-gradient shape optimization of a 2-D Euler flow , 1992 .
[150] David L. Darmofal,et al. Shock Capturing with Higher-Order, PDE-Based Artificial Viscosity , 2007 .
[151] Endre Süli,et al. hp-Version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form. , 2002 .
[152] Ralf Hartmann,et al. Goal-Oriented A Posteriori Error Estimation for Multiple Target Functionals , 2003 .
[153] A. U.S.,et al. Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics , 2009 .
[154] Peter A. Gnoffo,et al. Computational Aerothermodynamic Simulation Issues on Unstructured Grids , 2004 .
[155] Timothy G. Trucano,et al. Verification and Validation in Computational Fluid Dynamics , 2002 .
[156] Claes Johnson,et al. Numerics and hydrodynamic stability: toward error control in computational fluid dynamics , 1995 .
[157] M. Larson,et al. ADAPTIVE ERROR CONTROL FOR FINITE ELEMENTAPPROXIMATIONS OF THE LIFT AND DRAG COEFFICIENTS INVISCOUS , 1997 .
[158] Marius Paraschivoiu,et al. A posteriori finite element bounds for linear-functional outputs of coercive partial differential equations and of the Stokes problem , 1997 .
[159] Eric Schall,et al. Mesh adaptation as a tool for certified computational aerodynamics , 2004 .
[160] J. Alonso,et al. A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design , 2005 .
[161] Michael S. Eldred,et al. Design Under Uncertainty Employing Stochastic Expansion Methods , 2008 .
[162] J. Peraire,et al. Practical Three-Dimensional Aerodynamic Design and Optimization Using Unstructured Meshes , 1997 .
[163] Marshall Bern,et al. Adaptive Mesh Generation , 2003 .
[164] W. K. Anderson,et al. Al A A-2001-0596 Recent Improvements in Aerodynamic Design Optimization On Unstructured Meshes , 2001 .
[165] R. Verfürth,et al. Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .
[166] A. Jameson,et al. Optimum Shape Design for Unsteady Three-Dimensional Viscous Flows Using a Nonlinear Frequency-Domain Method , 2006 .
[167] M. Giles,et al. Adjoint Error Correction for Integral Outputs , 2003 .
[168] Simona Perotto,et al. New anisotropic a priori error estimates , 2001, Numerische Mathematik.
[169] Leszek Demkowicz,et al. Goal-oriented hp-adaptivity for elliptic problems , 2004 .
[170] Ralf Hartmann,et al. Adaptive discontinuous Galerkin methods with shock‐capturing for the compressible Navier–Stokes equations , 2006 .
[171] Krzysztof J. Fidkowski,et al. Output-Driven Anisotropic Mesh Adaptation for Viscous Flows using Discrete Choice Optimization , 2010 .
[172] Richard H. Burkhart,et al. A new approach to the solution of boundary value problems involving complex configurations , 1986 .
[173] Dominique Pelletier,et al. Mesh adaptation using different error indicators for the Euler equations , 2001 .
[174] Roger W. Logan,et al. Comparing 10 Methods for Solution Verification, and Linking to Model Validation , 2005, J. Aerosp. Comput. Inf. Commun..
[175] Leszek F. Demkowicz,et al. A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..
[176] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[177] Tobias Leicht. Anisotropic Mesh Refinement for Discontinuous Galerkin Methods in Aerodynamic Flow Simulations , 2006 .
[178] Serge Prudhomme,et al. New approaches to error estimation and adaptivity for the Stokes and Oseen equations , 1999 .
[179] Antonio Huerta,et al. Computing Bounds for Linear Functionals of Exact Weak Solutions to Poisson's Equation , 2004, SIAM J. Numer. Anal..
[180] Todd A. Oliver. A High-Order, Adaptive, Discontinuous Galerkin Finite Element Method for the Reynolds-Averaged Navier-Stokes Equations , 2008 .
[181] J. Newman,et al. Comparison of adjoint‐based and feature‐based grid adaptation for functional outputs , 2007 .
[182] David L. Darmofal,et al. A Quasi-Minimal Residual Method for Simultaneous Primal-Dual Solutions and Superconvergent Functional Estimates , 2002, SIAM J. Sci. Comput..
[183] Eric J. Nielsen,et al. Validation of 3D Adjoint Based Error Estimation and Mesh Adaptation for Sonic Boom Prediction , 2006 .
[184] R. Temam. Navier-Stokes Equations , 1977 .
[185] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[186] Kenneth G. Powell,et al. An adaptively-refined Cartesian mesh solver for the Euler equations , 1991 .
[187] William L. Kleb,et al. On Multi-Dimensional Unstructured Mesh Adaption , 1999 .
[188] David L. Darmofal,et al. A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations , 2007, J. Comput. Phys..
[189] Antony Jameson,et al. Optimum Shape Design for Unsteady Flows with Time-Accurate Continuous and Discrete Adjoint Methods , 2007 .