Structural, electronic, vibrational, and elastic properties of graphene/ MoS2 bilayer heterostructures

Graphene/MoS$_2$ van der Waals (vdW) heterostructures have become very important recently due to their promising technological applications. Many experimental and theoretical research groups across the globe have made outstanding contributions to benchmark the properties of graphene/MoS$_2$ heterostructures. Even though some research groups have already made an attempt to model the graphene/MoS$_2$ heterostructures using advanced state-of-art first-principles calculations, there exists several discrepancies in the results from different theoretical research groups and the experimental findings. In the present work, we revisit this problem by first principles approach and address the existing discrepancies about the interlayer spacing between graphene and MoS$_2$ monolayers in graphene/MoS$_2$ heterostructures, and the location of Dirac points near Fermi-level. We find that the Tkatchenko--Scheffler method efficiently evaluates the long-range vdW interactions and accurately predicts interlayer spacing between graphene and MoS$_2$ sheets. We further investigate the electronic, mechanical and vibrational properties of the optimized graphene/MoS$_2$ heterostructures created using 5$\times$5/4$\times$4 and 4$\times$4/3$\times$3 supercell geometries having different magnitudes of lattice mismatch. The effect of the varying interlayer spacing on the electronic properties of heterostructures is discussed. Our phonon calculations reveal that the interlayer shear and breathing phonon modes, which are very sensitive to the weak vdW interactions, play vital role in describing the thermal properties of the studied systems. The thermodynamic and elastic properties of heterostructures are further discussed. A systematic comparison between our results and the results reported from other research groups is presented to resolve the existing ambiguities in the literature.

[1]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[2]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[3]  Aldo H. Romero,et al.  Prediction and control of spin polarization in a Weyl semimetallic phase of BiSb , 2016 .

[4]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[5]  L. M. Woods,et al.  Interlayer Interactions in van der Waals Heterostructures: Electron and Phonon Properties. , 2016, ACS applied materials & interfaces.

[6]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[7]  Z. C. Tu,et al.  Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number , 2001, cond-mat/0112454.

[8]  A. Romero,et al.  The elastic, mechanical and thermodynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling , 2017, 1712.00293.

[9]  Yu-Lun Chueh,et al.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.

[10]  Sefaattin Tongay,et al.  Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. , 2014, Nano letters.

[11]  Wei Han,et al.  Graphene spintronics. , 2014, Nature nanotechnology.

[12]  F. Guinea,et al.  Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. , 2006, Physical review letters.

[13]  Weixiang Chen,et al.  In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. , 2011, Chemical communications.

[14]  Udo Schwingenschlögl,et al.  Heterostructures of transition metal dichalcogenides , 2015 .

[15]  G. Rignanese,et al.  Band structure tunability in MoS2 under interlayer compression: A DFT and GW study , 2013 .

[16]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[17]  Feihe Huang,et al.  Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries , 2011 .

[18]  J. Shan,et al.  Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. , 2009, Physical review letters.

[19]  Jaroslav Fabian,et al.  Tight-binding theory of the spin-orbit coupling in graphene structures , 2010 .

[20]  R. E. Mapasha,et al.  Mechanical properties of graphene and boronitrene , 2012 .

[21]  Jun Zhang,et al.  Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. , 2013, Nano letters.

[22]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[23]  Wei Hu,et al.  Effects of interlayer coupling and electric fields on the electronic structures of graphene and MoS2 heterobilayers , 2014, 1411.0357.

[24]  Jia-An Yan,et al.  Phonon dispersions and vibrational properties of monolayer, bilayer, and trilayer graphene: Density-functional perturbation theory , 2008, 0901.3093.

[25]  Xue-wei Cao,et al.  Vibrational properties of graphene and graphene layers , 2009 .

[26]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[27]  M. Koshino,et al.  Interlayer screening effect in graphene multilayers with A B A and A B C stacking , 2009, 0911.3484.

[28]  Mit H. Naik,et al.  Origin of layer dependence in band structures of two-dimensional materials , 2017, 1703.00257.

[29]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[30]  Young-Jun Yu,et al.  Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices , 2013, Nature Communications.

[31]  E. Bar-Ziv,et al.  Gate-voltage control of oxygen diffusion on graphene. , 2011, Physical review letters.

[32]  L. Wirtz,et al.  The phonon dispersion of graphite revisited , 2004, cond-mat/0404637.

[33]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[34]  X. D. Li,et al.  Structural and Electronic Properties of Superlattice Composed of Graphene and Monolayer MoS2 , 2013 .

[35]  Wei Hu,et al.  Effects of interlayer coupling and electric fields on the electronic structures of graphene and MoS2 heterobilayers , 2016 .

[36]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[37]  D. Raabe,et al.  Design of Mg alloys: The effects of Li concentration on the structure and elastic properties in the Mg–Li binary system by first principles calculations , 2017 .

[38]  Xiaohong Li,et al.  First-principles investigation of MoS2 monolayer adsorbed on SiO2 (0001) Surface , 2017 .

[39]  M. Hersam,et al.  Rotationally Commensurate Growth of MoS2 on Epitaxial Graphene. , 2016, ACS nano.

[40]  J. Kysar,et al.  Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description , 2009 .

[41]  James Hone,et al.  Investigation of Nonlinear Elastic Behavior of Two-Dimensional Molybdenum Disulfide , 2012 .

[42]  D. Akinwande,et al.  Pressure-Induced Charge Transfer Doping of Monolayer Graphene/MoS2 Heterostructure. , 2016, Small.

[43]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[44]  Adam P. Cohn,et al.  Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity , 2016, Nature Communications.

[45]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[46]  Jin-Wu Jiang Graphene versus MoS2: A short review , 2014, 1408.0437.

[47]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[48]  J. Fabian,et al.  Proximity Effects in Bilayer Graphene on Monolayer WSe_{2}: Field-Effect Spin Valley Locking, Spin-Orbit Valve, and Spin Transistor. , 2017, Physical review letters.

[49]  G. Barber,et al.  Graphane: a two-dimensional hydrocarbon , 2006, cond-mat/0606704.

[50]  Xavier Gonze,et al.  Interatomic force constants including the DFT-D dispersion contribution , 2016, 1801.08741.

[51]  A. Ouerghi,et al.  Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures. , 2016, Nano letters.

[52]  J. Fabian,et al.  Band-structure topologies of graphene: Spin-orbit coupling effects from first principles , 2009, 0904.3315.

[53]  Two-Dimensional MoS2-Graphene-Based Multilayer van der Waals Heterostructures: Enhanced Charge Transfer and Optical Absorption, and Electric-Field Tunable Dirac Point and Band Gap , 2016, 1611.02510.

[54]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[55]  Lithium Intercalation in Graphene/MoS2 Composites: First-Principles Insights , 2015, 1507.06034.

[56]  M. J. van Setten,et al.  The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table , 2017, Comput. Phys. Commun..

[57]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[58]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[59]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[60]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[61]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[62]  Harold S. Park,et al.  A review on the flexural mode of graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity and nanomechanical resonance , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[63]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[64]  Rui He,et al.  Observation of interlayer phonon modes in van der Waals heterostructures , 2014, 1410.4224.

[65]  J. Fabian,et al.  Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics , 2015, 1506.08954.

[66]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[67]  Aldo H. Romero,et al.  Giant tunable Rashba spin splitting in a two-dimensional BiSb monolayer and in BiSb/AlN heterostructures , 2017, 1701.06213.

[68]  S. De,et al.  Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage. , 2013, Physical chemistry chemical physics : PCCP.

[69]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[70]  A. Kuwabara,et al.  Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations , 2006 .

[71]  Weihua Tang,et al.  First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers , 2011 .

[72]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[73]  Guillermo Avendaño-Franco,et al.  Investigation of novel crystal structures of Bi-Sb binaries predicted using the minima hopping method. , 2016, Physical chemistry chemical physics : PCCP.

[74]  Marco Bianchi,et al.  Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum. , 2015, ACS nano.

[75]  S. Kodambaka,et al.  Tunable MoS2 bandgap in MoS2-graphene heterostructures , 2014 .

[76]  C. Nguyen Tuning the electronic properties and Schottky barrier height of the vertical graphene/MoS 2 heterostructure by an electric gating , 2018 .

[77]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[78]  Zhongyao Li,et al.  Electric Field and Strain Effect on Graphene-MoS2 Hybrid Structure: Ab Initio Calculations , 2015 .

[79]  S. Larentis,et al.  Band offset and negative compressibility in graphene-MoS2 heterostructures. , 2014, Nano letters.

[80]  J. Fabian,et al.  Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides , 2015, 1510.00166.

[81]  Ying Dai,et al.  Graphene adhesion on MoS₂ monolayer: an ab initio study. , 2011, Nanoscale.

[82]  Yan Cheng,et al.  First-principles study of the phonon vibrational spectra and thermal properties of hexagonal MoS2 , 2015 .

[83]  Edward McCann Asymmetry gap in the electronic band structure of bilayer graphene , 2006 .

[84]  G. Usaj,et al.  Bilayer graphene under pressure: Electron-hole symmetry breaking, valley Hall effect, and Landau levels , 2016, 1602.01704.

[85]  T. Heinz,et al.  Measurement of layer breathing mode vibrations in few-layer graphene , 2013 .

[86]  Kaixue Wang,et al.  In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures , 2014, Scientific Reports.

[87]  Jing Lu,et al.  Modelling of stacked 2D materials and devices , 2015 .

[88]  Qiang Fu,et al.  Catalysis with two-dimensional materials and their heterostructures. , 2016, Nature nanotechnology.

[89]  Mass inversion in graphene by proximity to dichalcogenide monolayer , 2016, 1608.00992.

[90]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[91]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[92]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[93]  A. Romero,et al.  Controlling the magnetic and optical responses of a MoS2 monolayer by lanthanide substitutional doping: a first-principles study. , 2017, Physical chemistry chemical physics : PCCP.