Method for Analysis of Different Oligosacchiride Structures

[1]  B. Devreese,et al.  Glycan structures of the structural subunit (HtH1) of Haliotis tuberculata hemocyanin , 2011, Glycoconjugate Journal.

[2]  B. Atanasov,et al.  Glycan structures and antiviral effect of the structural subunit RvH2 of Rapana hemocyanin. , 2010, Carbohydrate research.

[3]  Christos Gatsogiannis,et al.  Keyhole limpet hemocyanin: 9-A CryoEM structure and molecular model of the KLH1 didecamer reveal the interfaces and intricate topology of the 160 functional units. , 2009, Journal of molecular biology.

[4]  T. Hayashita,et al.  Fluorescence response mechanism of D-glucose selectivity for supramolecular probes composed of phenylboronic-acid-modified beta-cyclodextrin and styrylpyridinium dyes. , 2007, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[5]  Daoben Zhu,et al.  4-(N,N-Dimethylamine)benzonitrile (DMABN) derivatives with boronic acid and boronate groups: new fluorescent sensors for saccharides and fluoride ion , 2007 .

[6]  G. Surpateanu,et al.  Solubilisation of chlorinated solvents by cyclodextrin derivatives: a study by static headspace gas chromatography and molecular modelling. , 2007, Journal of hazardous materials.

[7]  S. Stevanović,et al.  A challenging insight on the structural unit 1 of molluscan Rapana venosa hemocyanin. , 2007, Archives of biochemistry and biophysics.

[8]  K. Hattori,et al.  Detection of environmental chemicals by SPR assay using branched cyclodextrin as sensor ligand , 2007 .

[9]  Soya Gamsey,et al.  Boronic acid-based bipyridinium salts as tunable receptors for monosaccharides and alpha-hydroxycarboxylates. , 2007, Journal of the American Chemical Society.

[10]  S. Bhosale β-Cyclodextrin as supramolecular catalyst in organic synthesis , 2007 .

[11]  I. Warner,et al.  Stereochemical and regiochemical trends in the selective detection of saccharides. , 2006, Journal of the American Chemical Society.

[12]  B. Wang,et al.  Water-soluble fluorescent boronic acid compounds for saccharide sensing: substituent effects on their fluorescence properties. , 2006, Chemistry.

[13]  S. Stevanović,et al.  Structure of hemocyanin subunit CaeSS2 of the crustacean Mediterranean crab Carcinus aestuarii. , 2005, Journal of biochemistry.

[14]  G. Surpateanu,et al.  Sulfobutyl Ether‐β‐Cyclodextrins: Promising Supramolecular Carriers for Aqueous Organometallic Catalysis , 2005 .

[15]  D. Cordes,et al.  The interaction of boronic acid-substituted viologens with pyranine: the effects of quencher charge on fluorescence quenching and glucose response. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[16]  M. Fernández,et al.  Stabilization of α-chymotrypsin by chemical modification with monoamine cyclodextrin , 2005 .

[17]  S. Stevanović,et al.  Structure and stability of arthropodan hemocyanin Limulus polyphemus. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[18]  C. D. Geddes,et al.  Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methoxyquinolinium heterocyclic nucleus: progress toward noninvasive and continuous glucose monitoring. , 2005, Bioorganic & medicinal chemistry.

[19]  J. Markl,et al.  cDNA Sequence, Protein Structure, and Evolution of the Single Hemocyanin from Aplysia californica, an Opisthobranch Gastropod , 2004, Journal of Molecular Evolution.

[20]  D. Cordes,et al.  Evaluation of Pyranine Derivatives in Boronic Acid Based Saccharide Sensing: Significance of Charge Interaction Between Dye and Quencher in Solution and Hydrogel , 2004, Journal of Fluorescence.

[21]  M. Heagy,et al.  Substituent effects on monoboronic acid sensors for saccharides based on N-phenyl-1,8-naphthalenedicarboximides. , 2004, The Journal of organic chemistry.

[22]  L. Szente,et al.  Cyclodextrins as food ingredients , 2004 .

[23]  A. Deelder,et al.  A novel Gal(beta1-4)Gal(beta1-4)Fuc(alpha1-6)-core modification attached to the proximal N-acetylglucosamine of keyhole limpet haemocyanin (KLH) N-glycans. , 2004, The Biochemical journal.

[24]  Joseph R Lakowicz,et al.  Noninvasive continuous monitoring of physiological glucose using a monosaccharide-sensing contact lens. , 2004, Analytical chemistry.

[25]  A. Deelder,et al.  A novel Gal( β 1-4)Gal( β 1-4)Fuc( α 1-6)-core modification attached to the proximal N-acetylglucosamine of keyhole limpet haemocyanin (KLH) N-glycans , 2004 .

[26]  S. Stevanović,et al.  Characterization of the carbohydrate moieties of the functional unit RvH1-a of Rapana venosa haemocyanin using HPLC/electrospray ionization MS and glycosidase digestion. , 2003, The Biochemical journal.

[27]  S. Stevanović,et al.  Oligomeric stability of Rapana venosa hemocyanin (RvH) and its structural subunits. , 2003, Biochimica et biophysica acta.

[28]  K. Uekama,et al.  Recent Aspects of Pharmaceutical Application of Cyclodextrins , 2002 .

[29]  U. Banerjee,et al.  Biotechnological applications of cyclodextrins. , 2002, Biotechnology advances.

[30]  Joseph R Lakowicz,et al.  Saccharide Detection Based on the Amplified Fluorescence Quenching of a Water-Soluble Poly(phenylene ethynylene) by a Boronic Acid Functionalized Benzyl Viologen Derivative. , 2002, Langmuir : the ACS journal of surfaces and colloids.

[31]  R. Wessling,et al.  Boronic acid substituted viologen based optical sugar sensors: modulated quenching with viologen as a method for monosaccharide detection , 2002 .

[32]  T. James,et al.  A d-glucose selective fluorescent assay , 2002 .

[33]  J. Lakowicz Topics in fluorescence spectroscopy , 2002 .

[34]  E. Anslyn,et al.  Teaching old indicators new tricks. , 2001, Accounts of chemical research.

[35]  M. Beltramini,et al.  Carbohydrate composition of Carcinus aestuarii hemocyanin. , 2001, Archives of biochemistry and biophysics.

[36]  T. Burmester Molecular evolution of the arthropod hemocyanin superfamily. , 2001, Molecular biology and evolution.

[37]  J. Szejtli Introduction and General Overview of Cyclodextrin Chemistry. , 1998, Chemical reviews.

[38]  J. Thomas-Oates,et al.  Primary structure of 21 novel monoantennary and diantennary N-linked carbohydrate chains from alphaD-hemocyanin of Helix pomatia. , 1997, European journal of biochemistry.

[39]  S. Shinkai,et al.  Fluorescent saccharide receptors: A sweet solution to the design, assembly and evaluation of boronic acid derived PET sensors , 1996 .

[40]  R. Zare,et al.  Capillary electrochromatography: operating characteristics and enantiomeric separations , 1996 .

[41]  S. Shinkai,et al.  Sugar-controlled association and photoinduced electron transfer in boronic-acid-appended porphyrins , 1995 .

[42]  J. Szejtli Cyclodextrins and their inclusion complexes , 1982 .

[43]  H. Snyder,et al.  Synthesis of Aromatic Boronic Acids. Aldehydo Boronic Acids and a Boronic Acid Analog of Tyrosine1 , 1958 .