Solid pole tide in global GPS and superconducting gravimeter observations: Signal retrieval and inference for mantle anelasticity

Abstract The mantle anelasticity plays an important role in Earth's interior dynamics. Here we seek to determine the lower-mantle anelasticity through the solution of the complex Love numbers at the Chandler wobble period. The Love numbers h 21 , l 21 , δ 21 and k 21 are obtained in the frequency domain by dividing off the observed polar motion, or more specifically the pole tide potential, from the observed GPS 3-D displacement field and SG gravity variation. The latter signals are obtained through the array processing method of OSE (optimal sequence estimation) that results in greatly enhanced signals to be extracted from global array data. The resultant Love number estimates h 21 = 0.6248 ( ± 5 e − 4 ) − 0.013 ( ± 5 e − 3 ) i , l 21 = 0.0904 ( ± 8 e − 4 ) − 0.0008 ( ± 2 e − 3 ) i , δ 21 = 1.156 ( ± 2 e − 3 ) − 0.003 ( ± 1 e − 3 ) i and k 21 = 0.3125 ( ± 2 e − 3 ) − 0.0069 ( ± 3 e − 3 ) i are thus well-constrained in comparison to past estimates that vary considerably. They further lead to estimates of the corresponding mantle anelastic parameters f r and f i , which in turn determines, under the single-absorption band assumption, the dispersion exponent of α = 0.21 ± 0.02 with respect to the reference frequency of 5 mHz. We believe our estimate is robust and hence can better constrain the mantle anelasticity and attenuation models of the Earth interior.

[1]  L. Longuevergne,et al.  Modelling atmospheric and induced non-tidal oceanic loading contributions to surface gravity and tilt measurements , 2009 .

[2]  C. Wilson,et al.  Maximum likelihood estimates of polar motion parameters , 1990 .

[3]  B. Chao,et al.  Estimation of period and Q of the Chandler wobble , 1996 .

[4]  Xiaodong Chen,et al.  Determination of gravimetric parameters of the gravity pole tide using observations recorded with superconducting gravimeters , 2009 .

[5]  B. Chao,et al.  Data stacking methods for isolation of normal‐mode singlets of Earth's free oscillation: Extensions, comparisons, and applications , 2015 .

[6]  W. Munk,et al.  Astronomy-Geophysics. (Book Reviews: The Rotation of the Earth. A geophysical discussion) , 1975 .

[7]  S. Rosat,et al.  Estimation of the gravimetric pole tide by stacking long time-series of GGP superconducting gravimeters , 2016 .

[8]  J. Nastula,et al.  Chandler wobble parameters from SLR and GRACE , 2015 .

[9]  R. Gross The Observed Period and Q of The Chandler Wobble , 2002 .

[10]  B. Romanowicz,et al.  Deep Earth Structure: Q of the Earth from Crust to Core , 2007 .

[11]  J. Matas,et al.  On the anelastic contribution to the temperature dependence of lower mantle seismic velocities , 2007 .

[12]  Jianqiao Xu,et al.  A study of gravity variations caused by polar motion using superconducting gravimeter data from the GGP network , 2004 .

[13]  S. Dickman,et al.  Revised predictions of long‐period ocean tidal effects on Earth's rotation rate , 1995 .

[14]  C. Wilson,et al.  On the variability of the Chandler frequency , 1997 .

[15]  B. Romanowicz,et al.  Measurement and implications of frequency dependence of attenuation , 2009 .

[16]  M. Harnisch,et al.  Study of Long-term Gravity Variations, Based on Data of the GGP Co-operation , 2001 .

[17]  F. Dahlen,et al.  The period and Q of the Chandler wobble , 1981 .

[18]  Shailen D. Desai,et al.  Observing the pole tide with satellite altimetry , 2002 .

[19]  S. Loyer,et al.  Determination of the gravimetric factor at the Chandler period from Earth orientation data and superconducting gravimetry observations , 1999 .

[20]  Site displacement due to variation in Earth rotation , 1998 .

[21]  M. Heflin,et al.  Stacking global GPS verticals and horizontals to solve for the fortnightly and monthly body tides: Implications for mantle anelasticity , 2015 .

[22]  G. Petit,et al.  IERS Conventions (2010) , 2010 .

[23]  J. Ray,et al.  Consistent estimates of the dynamic figure parameters of the earth , 2015, Journal of Geodesy.

[24]  R. Ray,et al.  Validation of long-period oceanic tidal models with superconducting gravimeters , 2006 .

[25]  W. Shen,et al.  Search for the Slichter modes based on a new method: Optimal sequence estimation , 2013 .

[26]  B. Chao,et al.  Spherical harmonic stacking for the singlets of Earth's normal modes of free oscillation , 2014 .

[27]  R. O. Vicente,et al.  An analysis of the homogeneous ILS polar motion series , 1980 .

[28]  J. Ray,et al.  Polar motion excitations for an Earth model with frequency‐dependent responses: 1. A refined theory with insight into the Earth's rheology and core‐mantle coupling , 2013 .

[29]  Xiaogong Hu,et al.  Estimation of the pole tide gravimetric factor at the chandler period through wavelet filtering , 2007 .

[30]  Thomas A. Herring,et al.  Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Ea , 2002 .

[31]  Paul Vauterin,et al.  Tsoft: graphical and interactive software for the analysis of time series and Earth tides , 2005, Comput. Geosci..

[32]  R. Buland,et al.  Observations from the IDA network of attenuation and splitting during a recent earthquake , 1979, Nature.

[33]  T. Jahr,et al.  Results from 44 months of observations with a superconducting gravimeter at Moxa/Germany , 2004 .

[34]  S. Dickman,et al.  Constraints on Q at long periods from Earth's rotation , 1998 .

[35]  Xiaodong Chen,et al.  Global analysis of the GGP superconducting gravimeters network for the estimation of the pole tide gravimetric amplitude factor , 2006 .

[36]  J. Kuehne,et al.  Estimates of the Chandler wobble frequency and Q , 1996 .

[37]  Kurt Lambeck,et al.  Geophysical geodesy : the slow deformations of the earth Lambeck. , 1988 .

[38]  John M. Wahr,et al.  Body tides on an elliptical, rotating, elastic and oceanless earth , 1981 .

[39]  Thomas A. Herring,et al.  Modeling of nutation‐precession: Very long baseline interferometry results , 2002 .

[40]  D. Gibert,et al.  Inversion of polar motion data: Chandler wobble, phase jumps, and geomagnetic jerks , 2008 .

[41]  S. Karato,et al.  Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle , 1990 .

[42]  Don L. Anderson,et al.  The frequency dependence of Q in the Earth and implications for mantle rheology and Chandler wobble , 1979 .

[43]  D. L. Anderson The Anelasticity of the Mantle , 2010 .

[44]  S. Desai,et al.  Constraints on mantle anelasticity from geodetic observations, and implications for the J2 anomaly , 2006 .

[45]  J. Hinderer,et al.  Gravimetric Methods – Superconducting Gravity Meters , 2007 .

[46]  F. Seitz,et al.  Determination of the Earth's pole tide Love number k2 from observations of polar motion using an adaptive Kalman filter approach , 2012 .

[47]  John M. Wahr,et al.  Deformation induced by polar motion , 1985 .