Gadolinium-based mixed-metal nitride clusterfullerenes Gd(x)Sc(3-x)N@C80 (x=1, 2).

The first gadolinium-based mixed-metal nitride clusterfullerenes Gd(x)Sc(3-x)N@C(80) (I) (1, x=2; 2, x=1) have been successfully synthesized by the reactive gas atmosphere method and isolated facilely by recycling high-performance liquid chromatography (HPLC). The sum yield of 1 and 2 is 30-40 times higher than that of Gd(3)N@C(80) (I). Moreover, an enhanced relative yield of 2 over the Sc(3)N@C(80) (I) is achieved under the optimized synthesis conditions. According to the UV/Vis/NIR spectroscopic characterization, 1 and 2 are both stable fullerenes with large optical band-gaps while 1 has higher similarity to Gd(3)N@C(80) (I) and 2 resembles Sc(3)N@C(80) (I). The vibrational structures of 1 and 2 are studied by Fourier-transform infrared (FTIR) spectroscopy as well as density functional theory (DFT) computations. In particular, the structures of the encaged Gd(x)Sc(3-x)N clusters within 1 and 2 are analyzed.

[1]  Marilyn M. Olmstead,et al.  Isolation and Crystallographic Characterization of ErSc2N@C80: an Endohedral Fullerene Which Crystallizes with Remarkable Internal Order , 2000 .

[2]  M. Krause,et al.  Gadoliniumnitrid Gd3N in Kohlenstoffkäfigen: der Einfluss von Clustergröße und Bindungsstärke , 2005 .

[3]  A. Fisher,et al.  Small-bandgap endohedral metallofullerenes in high yield and purity , 1999, Nature.

[4]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[5]  Shangfeng Yang,et al.  A large family of dysprosium-based trimetallic nitride endohedral fullerenes: Dy3N@C2n (39 , 2005, The journal of physical chemistry. B.

[6]  Matthias Krause,et al.  Isolation and characterisation of two Sc3N@C80 isomers. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  Lothar Dunsch,et al.  Expanding the number of stable isomeric structures of the C80 cage: a new fullerene Dy3N@C80. , 2005, Chemistry.

[8]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[9]  O. Boltalina,et al.  Electron affinity of some trimetallic nitride and conventional metallofullerenes , 2002 .

[10]  E. Hajdu,et al.  Materials science: A stable non-classical metallofullerene family , 2000, Nature.

[11]  J. Noack,et al.  Endohedral nitride cluster fullerenes: Formation and spectroscopic analysis of L3−xMxN@C2n (0≤x≤3; N=39,40) , 2004 .

[12]  Harold Basch,et al.  Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms , 1992 .

[13]  Shangfeng Yang,et al.  Di- and tridysprosium endohedral metallofullerenes with cages from C94 to C100. , 2006, Angewandte Chemie.

[14]  S. Kennel,et al.  Metallofullerene drug design , 1999 .

[15]  Matthias Krause,et al.  Expanding the world of endohedral fullerenes--the Tm3N@C2n (39< or =n< or =43) clusterfullerene family. , 2005, Chemistry.

[16]  M. Krause,et al.  Gadolinium nitride Gd3N in carbon cages: the influence of cluster size and bond strength. , 2005, Angewandte Chemie.

[17]  H. Dorn,et al.  Lutetium-based Trimetallic Nitride Endohedral Metallofullerenes: New Contrast Agents , 2002 .

[18]  Roger M. Macfarlane,et al.  Fluorescence spectroscopy and emission lifetimes of Er3+ in ErxSc3−xN@C80 (x=1–3) , 2001 .

[19]  S. P. Rath,et al.  Pyramidalization of Gd3N inside a C80 cage. The synthesis and structure of Gd3N@C80. , 2004, Chemical communications.

[20]  M. Krause,et al.  Structure and stability of endohedral fullerene Sc3N@C80: A Raman, infrared, and theoretical analysis , 2001 .

[21]  D. N. Laikov Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets , 1997 .

[22]  Shangfeng Yang,et al.  Endohedrale Di‐ und Tridysprosiumfullerene mit Käfigen von C94 bis C100 , 2006 .