Two meshless procedures: moving Kriging interpolation and element-free Galerkin for fractional PDEs

In this paper, the element-free Galerkin (EFG) meshless method and moving Kriging collocation meshless technique are applied for finding the numerical solution of a class of two-dimensional (2D) nonlinear time fractional partial differential equations. The Klein–Gordon, sine-Gordon, diffusion wave and Cattaneo equations with Neumann boundary condition are studied. The time fractional derivative has been described in the Caputo’s sense. Firstly, we use a semi-implicit finite difference scheme of convergence order , and then for obtaining a full discrete scheme, the space derivative is discretized with the EFG and moving Kriging collocation techniques. The EFG method uses a weak form of the considered equation that is similar to the finite element method with the difference that in the EFG method, test and trial functions are moving least squares approximation (MLS) shape functions. Also, in the element-free Galekin method, we do not use any triangular, quadrangular, or other types of meshes. The EFG method is a global method while finite element method is a local one. The EFG method is not a truly meshless method and for integration uses a background mesh. We prove the unconditional stability and obtain an error bound for the EFG method using the energy method. Numerical examples are reported which support the theoretical results and the efficiency of the proposed scheme.

[1]  Xuan Zhao,et al.  A Fourth-order Compact ADI scheme for Two-Dimensional Nonlinear Space Fractional Schrödinger Equation , 2014, SIAM J. Sci. Comput..

[2]  Xiaolin Li,et al.  A Galerkin boundary node method and its convergence analysis , 2009 .

[3]  I. Podlubny Fractional differential equations , 1998 .

[4]  Baodong Dai,et al.  A meshless local moving Kriging method for two-dimensional solids , 2011, Appl. Math. Comput..

[5]  Ya-Nan Zhang,et al.  Error Estimates of Crank-Nicolson-Type Difference Schemes for the Subdiffusion Equation , 2011, SIAM J. Numer. Anal..

[6]  Xiaolin Li,et al.  Meshless Galerkin algorithms for boundary integral equations with moving least square approximations , 2011 .

[7]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[8]  Yubin Yan,et al.  A finite element method for time fractional partial differential equations , 2011 .

[9]  Dumitru Baleanu,et al.  A Spectral Legendre–Gauss–Lobatto Collocation Method for a Space-Fractional Advection Diffusion Equations with Variable Coefficients , 2013 .

[10]  Jingtang Ma,et al.  High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..

[11]  Fawang Liu,et al.  Numerical methods and analysis for a class of fractional advection-dispersion models , 2012, Comput. Math. Appl..

[12]  Yumin Cheng,et al.  A novel interpolating element-free Galerkin (IEFG) method for two-dimensional elastoplasticity , 2014 .

[13]  Chi King Lee,et al.  On error estimation and adaptive refinement for element free Galerkin method: Part II: adaptive refinement , 2004 .

[14]  Kassem Mustapha,et al.  Time-stepping discontinuous Galerkin methods for fractional diffusion problems , 2014, Numerische Mathematik.

[15]  Changpin Li,et al.  A numerical approach to the generalized nonlinear fractional Fokker-Planck equation , 2012, Comput. Math. Appl..

[16]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[17]  S. Momani,et al.  Fractional green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics , 2007 .

[18]  YuanTong Gu,et al.  AN ADVANCED MESHLESS METHOD FOR TIME FRACTIONAL DIFFUSION EQUATION , 2011 .

[19]  Mehdi Dehghan,et al.  A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions , 2007, Comput. Math. Appl..

[20]  H. Qi,et al.  Solutions of the space-time fractional Cattaneo diffusion equation , 2011 .

[21]  Guanhua Huang,et al.  A finite element solution for the fractional advection–dispersion equation , 2008 .

[22]  Changpin Li,et al.  A Fully Discrete Discontinuous Galerkin Method for Nonlinear Fractional Fokker-Planck Equation , 2010 .

[23]  K. Liew,et al.  An improved element-free Galerkin method for numerical modeling of the biological population problems , 2014 .

[24]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[25]  Zaid M. Odibat,et al.  Computational algorithms for computing the fractional derivatives of functions , 2009, Math. Comput. Simul..

[26]  Fawang Liu,et al.  A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain , 2015, J. Comput. Phys..

[27]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .

[28]  Xiaolin Li,et al.  Meshless analysis and applications of a symmetric improved Galerkin boundary node method using the improved moving least-square approximation , 2016 .

[29]  Mingrong Cui Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation , 2012, Numerical Algorithms.

[30]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[31]  L. Gu,et al.  Moving kriging interpolation and element‐free Galerkin method , 2003 .

[32]  William McLean,et al.  Time-stepping error bounds for fractional diffusion problems with non-smooth initial data , 2014, J. Comput. Phys..

[33]  Eid H. Doha,et al.  Jacobi-Gauss-Lobatto collocation method for the numerical solution of l+l nonlinear Schrödinger equations , 2014, J. Comput. Phys..

[34]  Ameneh Taleei,et al.  Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic , 2014 .

[35]  Fawang Liu,et al.  An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation , 2010 .

[36]  Ricardo H. Nochetto,et al.  A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..

[37]  Haitao Qi,et al.  The Cattaneo-type time fractional heat conduction equation for laser heating , 2013, Comput. Math. Appl..

[38]  Mehdi Dehghan,et al.  Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM) , 2010, Comput. Phys. Commun..

[39]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[40]  Zhibo Wang,et al.  A compact difference scheme for a two dimensional fractional Klein-Gordon equation with Neumann boundary conditions , 2014, J. Comput. Phys..

[41]  Mehdi Dehghan,et al.  A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations , 2014, J. Comput. Appl. Math..

[42]  ZhaoXuan,et al.  Second-order approximations for variable order fractional derivatives , 2015 .

[43]  Yumin Cheng,et al.  The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems , 2011 .

[44]  W. Wyss The fractional diffusion equation , 1986 .

[45]  Yumin Cheng,et al.  Error estimates for the finite point method , 2008 .

[46]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[47]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[48]  K. Liew,et al.  The improved element-free Galerkin method for two-dimensional elastodynamics problems , 2013 .

[49]  Xuan Zhao,et al.  Compact Crank–Nicolson Schemes for a Class of Fractional Cattaneo Equation in Inhomogeneous Medium , 2014, Journal of Scientific Computing.

[50]  Fawang Liu,et al.  Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation , 2014 .

[51]  Mehdi Dehghan,et al.  On the solution of the non-local parabolic partial differential equations via radial basis functions , 2009 .

[52]  Mehdi Maerefat,et al.  Explicit and implicit finite difference schemes for fractional Cattaneo equation , 2010, J. Comput. Phys..

[53]  L. W. Zhang,et al.  An element-free computational framework for elastodynamic problems based on the IMLS-Ritz method , 2015 .

[54]  Mehdi Dehghan,et al.  A moving least square reproducing polynomial meshless method , 2013 .

[55]  Ted Belytschko,et al.  An error estimate in the EFG method , 1998 .

[56]  Yangquan Chen,et al.  Computers and Mathematics with Applications Numerical Approximation of Nonlinear Fractional Differential Equations with Subdiffusion and Superdiffusion , 2022 .

[57]  YuanTong Gu,et al.  A meshless local Kriging method for large deformation analyses , 2007 .

[58]  Jincheng Ren,et al.  Efficient numerical approximation of the multi-term time fractional diffusion-wave equations , 2015 .

[59]  Mehdi Dehghan,et al.  The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas , 2011, Comput. Phys. Commun..

[60]  Cheng Yu-Min,et al.  A meshless method with complex variables for elasticity , 2005 .

[61]  Zhi-Zhong Sun,et al.  Maximum norm error analysis of difference schemes for fractional diffusion equations , 2015, Appl. Math. Comput..

[62]  K. Burrage,et al.  A new fractional finite volume method for solving the fractional diffusion equation , 2014 .

[63]  Chi King Lee,et al.  On error estimation and adaptive refinement for element free Galerkin method. Part I: stress recovery and a posteriori error estimation , 2004 .

[64]  Xiaolin Li,et al.  Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces , 2016 .

[65]  Abner J. Salgado,et al.  Finite Element Approximation of the Parabolic Fractional Obstacle Problem , 2015, SIAM J. Numer. Anal..

[66]  Zhi-Zhong Sun,et al.  Error Analysis of a Compact ADI Scheme for the 2D Fractional Subdiffusion Equation , 2014, J. Sci. Comput..

[67]  A local point interpolation method (LPIM) for static and dynamic analysis of thin beams , 2001 .

[68]  Fanhai Zeng,et al.  Numerical Methods for Fractional Calculus , 2015 .

[69]  Zhi‐zhong Sun,et al.  A compact difference scheme for the fractional diffusion-wave equation , 2010 .

[70]  Xiaolin Li An interpolating boundary element-free method for three-dimensional potential problems , 2015 .

[71]  M. Dehghan,et al.  Solving nonlinear fractional partial differential equations using the homotopy analysis method , 2010 .

[72]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[73]  L. W. Zhang,et al.  An element-free based solution for nonlinear Schrödinger equations using the ICVMLS-Ritz method , 2014, Appl. Math. Comput..

[74]  Limei Li,et al.  Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation , 2013, J. Comput. Phys..

[75]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[76]  Limei Li,et al.  Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation , 2013, J. Comput. Phys..

[77]  Youngjoon Hong,et al.  Numerical Approximation of the Singularly Perturbed Heat Equation in a Circle , 2014, J. Sci. Comput..

[78]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[79]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[80]  Fawang Liu,et al.  A RBF meshless approach for modeling a fractal mobile/immobile transport model , 2014, Appl. Math. Comput..

[81]  Dumitru Baleanu,et al.  On shifted Jacobi spectral approximations for solving fractional differential equations , 2013, Appl. Math. Comput..

[82]  Xuan Zhao,et al.  Second-order approximations for variable order fractional derivatives: Algorithms and applications , 2015, J. Comput. Phys..

[83]  Ted Belytschko,et al.  Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method , 1998 .

[84]  Xiaolin Li,et al.  Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method , 2015, Appl. Math. Comput..

[85]  Fawang Liu,et al.  A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..

[86]  Mehdi Dehghan,et al.  The use of compact boundary value method for the solution of two-dimensional Schrödinger equation , 2009 .

[87]  Fawang Liu,et al.  Finite element approximation for a modified anomalous subdiffusion equation , 2011 .

[88]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[89]  Changpin Li,et al.  Fractional difference/finite element approximations for the time-space fractional telegraph equation , 2012, Appl. Math. Comput..

[90]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[91]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[92]  Ali H. Bhrawy,et al.  A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations , 2015, J. Comput. Phys..

[93]  Mehdi Dehghan,et al.  An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein–Gordon equations , 2015 .

[94]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[95]  Da Xu,et al.  Alternating Direction Implicit Galerkin Finite Element Method for the Two-Dimensional Time Fractional Evolution Equation , 2014 .

[96]  Fawang Liu,et al.  Galerkin finite element approximation of symmetric space-fractional partial differential equations , 2010, Appl. Math. Comput..

[97]  Xi-Qiao Feng,et al.  An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields , 2010 .

[98]  Zhi-Zhong Sun,et al.  Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..

[99]  Zhi-Zhong Sun,et al.  A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications , 2014, J. Comput. Phys..

[100]  Dumitru Baleanu,et al.  A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations , 2015, J. Comput. Phys..

[101]  Cheng Yu-min,et al.  Boundary element-free method for elastodynamics , 2005 .

[102]  Mehdi Dehghan,et al.  A new operational matrix for solving fractional-order differential equations , 2010, Comput. Math. Appl..

[103]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[104]  K. M. Liew,et al.  The improved complex variable element-free Galerkin method for two-dimensional Schrödinger equation , 2014, Comput. Math. Appl..

[105]  YuanTong Gu,et al.  A boundary point interpolation method for stress analysis of solids , 2002 .

[106]  K ASSEM,et al.  Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .