Investigation of integration algorithms for rate-dependent crystal plasticity using explicit finite element codes

The work presented here concerns the use of rate-dependent crystal plasticity into explicit dynamic finite element codes for structural analysis. Different integration or stress update algorithms for the numerical implementation of crystal plasticity, two explicit algorithms and a fully-implicit one, are described in detail and compared in terms of convergence, accuracy and computation time. The results show that the implicit time integration is very robust and stable, provided low enough convergence tolerance is used for low strain-rate sensitivity coefficients, while being the slowest in terms of CPU time. Explicit methods prove to be fast, stable and accurate. The algorithms are then applied to two structural analyses, one concerning flat rolling of a polycrystalline slab and another on the response of a multicrystalline sample under uniaxial tensile condition. The results show that the explicit algorithms perform well with simulation times much smaller compared to their implicit counterpart. Finally, mesh sensitivity for the second structural analysis is investigated and shows to slightly affect the global response of the structure.

[1]  G. Cailletaud,et al.  Three-dimensional finite element simulation of a polycrystalline copper specimen , 2007 .

[2]  Robert J. Asaro,et al.  Localized deformation modes and non-Schmid effects in crystalline solids. Part II. deformation patterns , 1996 .

[3]  J. Wert,et al.  Grain interaction effects in polycrystalline Cu , 2005 .

[4]  S. Schmidt,et al.  Lattice rotations of individual bulk grains Part II: correlation with initial orientation and model comparison , 2004 .

[5]  F. Barlat,et al.  An effective computational algorithm for rate-independent crystal plasticity based on a single crystal yield surface with an application to tube hydroforming , 2007 .

[6]  R. Asaro,et al.  Finite element analysis of crystalline solids , 1985 .

[7]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[8]  Pascal Jacques,et al.  Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons , 2006 .

[9]  Geoffrey Ingram Taylor,et al.  Bakerian Lecture. The Distortion of an Aluminium Crystal during a Tensile Test , 1923 .

[10]  N. O'Dowd,et al.  Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains , 2001 .

[11]  D. McDowell,et al.  A semi-implicit integration scheme for rate independent finite crystal plasticity , 2006 .

[12]  R. Hill,et al.  XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. , 1951 .

[13]  R. Hill Generalized constitutive relations for incremental deformation of metal crystals by multislip , 1966 .

[14]  James R. Rice,et al.  Strain localization in ductile single crystals , 1977 .

[15]  Peter E. McHugh,et al.  Comparison of the implicit and explicit finite element methods using crystal plasticity , 2007 .

[16]  E. Schmid Über die Schubverfestigung von Einkristallen bei plastischer Deformation , 1926 .

[17]  Christian Miehe,et al.  A comparative study of stress update algorithms for rate‐independent and rate‐dependent crystal plasticity , 2001 .

[18]  Michael Ortiz,et al.  Computational modelling of single crystals , 1993 .

[19]  Mica Grujicic,et al.  Crystal plasticity analysis of earing in deep-drawn OFHC copper cups , 2002 .

[20]  Alan Needleman,et al.  Material rate dependence and localized deformation in crystalline solids , 1983 .

[21]  Georges Cailletaud,et al.  On the selection of active slip systems in crystal plasticity , 2005 .

[22]  Surya R. Kalidindi,et al.  On the accuracy of the predictions of texture evolution by the finite element technique for fcc polycrystals , 1998 .

[23]  S. Nemat-Nasser,et al.  A framework for numerical integration of crystal elasto-plastic constitutive equations compatible with explicit finite element codes , 2007 .

[24]  K. S. Havner The theoretical behavior of a polycrystalline solid as related to certain general concepts of continuum plasticity , 1969 .

[25]  Florent Bridier,et al.  In-plane strain measurements on a microscopic scale by coupling digital image correlation and an in situ SEM technique , 2006 .

[26]  P. McHugh,et al.  Investigation of finite element mesh independence in rate dependent materials , 2006 .

[27]  Otmar Kolednik,et al.  A new tool for the experimental characterization of micro-plasticity , 2003 .

[28]  O. Kolednik,et al.  Erratum to “On the experimental characterization of crystal plasticity in polycrystals” [Materials Science and Engineering A 342 (1–2) (2003) 152–168] , 2004 .

[29]  Mark F. Horstemeyer,et al.  On the numerical implementation of 3D rate‐dependent single crystal plasticity formulations , 2005 .

[30]  J. Crépin,et al.  Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials , 2007 .

[31]  Henning Friis Poulsen,et al.  Lattice rotations of individual bulk grains. Part I: 3D X-ray characterization , 2003 .

[32]  L. Anand,et al.  A computational procedure for rate-independent crystal plasticity , 1996 .

[33]  Z. Zhao,et al.  Influence of in-grain mesh resolution on the prediction of deformation textures in fcc polycrystals by crystal plasticity FEM , 2007 .

[34]  S. N. Kuchnicki,et al.  Efficient and robust constitutive integrators for single-crystal plasticity modeling , 2005 .

[35]  Peter E. McHugh,et al.  Computational modeling of metal matrix composite materials. I: Isothermal deformation patterns in ideal microstructures , 1993 .

[36]  P. Franciosi,et al.  Latent hardening in copper and aluminium single crystals , 1980 .

[37]  J. Mandel,et al.  Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques , 1973 .

[38]  J. Rice,et al.  Rate sensitivity of plastic flow and implications for yield-surface vertices , 1983 .

[39]  Elisabeth Massoni,et al.  Rate-independent crystalline and polycrystalline plasticity, application to FCC materials , 2000 .

[40]  Zhichao Sun,et al.  A robust integration algorithm for implementing rate dependent crystal plasticity into explicit finite element method , 2008 .

[41]  Wiktor Gambin,et al.  Model of plastic anisotropy evolution with texture-dependent yield surface , 2004 .

[42]  H. Wenk,et al.  Texture and Anisotropy , 2004 .

[43]  K. Inal,et al.  Crystal plasticity simulation of the hydrostatic bulge test , 2004 .

[44]  E. Nakamachi,et al.  Multi-scale finite element analyses of sheet metals by using SEM-EBSD measured crystallographic RVE models , 2007 .

[45]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .