Publisher Correction: Role of PKC in the Regulation of the Human Kidney Chloride Channel ClC-Ka

[1]  Weiqi Zhang,et al.  DHHC7-mediated palmitoylation of the accessory protein barttin critically regulates the functions of ClC-K chloride channels , 2020, The Journal of Biological Chemistry.

[2]  G. Iyer,et al.  Intracellular Signaling , 2020, Abeloff's Clinical Oncology.

[3]  D. Ellison Clinical Pharmacology in Diuretic Use. , 2019, Clinical journal of the American Society of Nephrology : CJASN.

[4]  A. Newton,et al.  Activation of atypical protein kinase C by sphingosine 1-phosphate revealed by an aPKC-specific activity reporter , 2019, Science Signaling.

[5]  Michael Pusch,et al.  CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. , 2018, Physiological reviews.

[6]  L. Milella,et al.  Dandelion Root Extract Induces Intracellular Ca2+ Increases in HEK293 Cells , 2018, International journal of molecular sciences.

[7]  Y. Hannun,et al.  Co-ordinated activation of classical and novel PKC isoforms is required for PMA-induced mTORC1 activation , 2017, PloS one.

[8]  C. Fahlke,et al.  Reduced Membrane Insertion of CLC-K by V33L Barttin Results in Loss of Hearing, but Leaves Kidney Function Intact , 2017, Front. Physiol..

[9]  R. Chambrey,et al.  The ClC-K2 Chloride Channel Is Critical for Salt Handling in the Distal Nephron. , 2017, Journal of the American Society of Nephrology : JASN.

[10]  H. Castrop,et al.  Salt‐losing nephropathy in mice with a null mutation of the Clcnk2 gene , 2016, Acta physiologica.

[11]  L. Milella,et al.  Spilanthol from Acmella Oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney , 2016, PloS one.

[12]  F. Recchia,et al.  Arginine vasopressin receptor signaling and functional outcomes in heart failure. , 2016, Cellular signalling.

[13]  Nataliya Gorinski,et al.  Human CLC-K Channels Require Palmitoylation of Their Accessory Subunit Barttin to Be Functional* , 2015, The Journal of Biological Chemistry.

[14]  H. Pelham,et al.  Peptide and small molecule inhibitors of HECT-type ubiquitin ligases , 2014, Proceedings of the National Academy of Sciences.

[15]  A. Liantonio,et al.  Targeting kidney CLC-K channels: pharmacological profile in a human cell line versus Xenopus oocytes. , 2014, Biochimica et biophysica acta.

[16]  M. Keck,et al.  CLCNKB mutations causing mild Bartter syndrome profoundly alter the pH and Ca2+ dependence of ClC-Kb channels , 2014, Pflügers Archiv - European Journal of Physiology.

[17]  M. Pusch,et al.  Alkaline pH block of CLC-K kidney chloride channels mediated by a pore lysine residue. , 2012, Biophysical journal.

[18]  G. Burnstock,et al.  Purinergic signalling in the kidney in health and disease , 2013, Purinergic Signalling.

[19]  V. Vallon,et al.  P2Y receptors and kidney function. , 2012, Wiley interdisciplinary reviews. Membrane transport and signaling.

[20]  Enrique J. Fernandez-Sanchez,et al.  Protein Kinase C (PKC)-promoted Endocytosis of Glutamate Transporter GLT-1 Requires Ubiquitin Ligase Nedd4-2-dependent Ubiquitination but Not Phosphorylation* , 2012, The Journal of Biological Chemistry.

[21]  Ye Fang,et al.  Dynamic mass redistribution assays decode surface influence on signaling of endogenous purinergic P2Y receptors. , 2012, Assay and drug development technologies.

[22]  G. Valenti,et al.  In-vivo administration of CLC-K kidney chloride channels inhibitors increases water diuresis in rats: a new drug target for hypertension? , 2012, Journal of hypertension.

[23]  P. Lipp,et al.  Protein kinase C: the "masters" of calcium and lipid. , 2011, Cold Spring Harbor perspectives in biology.

[24]  G. Valenti,et al.  NKCC2 is activated in Milan hypertensive rats contributing to the maintenance of salt-sensitive hypertension , 2011, Pflügers Archiv - European Journal of Physiology.

[25]  A. Sorkin,et al.  Protein Kinase C-dependent Ubiquitination and Clathrin-mediated Endocytosis of the Cationic Amino Acid Transporter CAT-1* , 2011, The Journal of Biological Chemistry.

[26]  M. Pusch,et al.  Molecular Pharmacology of Kidney and Inner Ear CLC-K Chloride Channels , 2010, Front. Pharmacol..

[27]  A. Picollo,et al.  A regulatory calcium-binding site at the subunit interface of CLC-K kidney chloride channels , 2010, The Journal of general physiology.

[28]  C. Fahlke,et al.  Barttin activates ClC-K channel function by modulating gating. , 2010, Journal of the American Society of Nephrology : JASN.

[29]  S. Kimmel,et al.  Potential Effects of Aggressive Decongestion During the Treatment of Decompensated Heart Failure on Renal Function and Survival , 2010, Circulation.

[30]  A. Sorkin,et al.  Lysine 63-linked Polyubiquitination of the Dopamine Transporter Requires WW3 and WW4 Domains of Nedd4-2 and UBE2D Ubiquitin-conjugating Enzymes* , 2010, The Journal of Biological Chemistry.

[31]  I. S. Gurung,et al.  Comparison of regulated passive membrane conductance in action potential–firing fast- and slow-twitch muscle , 2009, The Journal of general physiology.

[32]  U. Scholl,et al.  Molecular basis of DFNB73: mutations of BSND can cause nonsyndromic deafness or Bartter syndrome. , 2009, American journal of human genetics.

[33]  Kevin Spelman,et al.  The diuretic effect in human subjects of an extract of Taraxacum officinale folium over a single day. , 2009, Journal of alternative and complementary medicine.

[34]  F. Cordelières,et al.  A guided tour into subcellular colocalization analysis in light microscopy , 2006, Journal of microscopy.

[35]  U. Scholl,et al.  Barttin modulates trafficking and function of ClC-K channels. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  G. Weisman,et al.  P2 receptors: intracellular signaling , 2006, Pflügers Archiv.

[37]  Min-jon Lin,et al.  Cellular Physiology Cellular Physiology Cellular Physiology Cellular Physiology Cellular Physiology Functional Study of Clc-1 Mutants Expressed in Xenopus Ocytes Reveals That a C-terminal Region Thr891-ser892-thr893 Is Responsible for the Effects of Protein Kinase C Activator Key Words Clc-1 @bullet , 2022 .

[38]  M. Tiberi,et al.  Opposing effects of phorbol‐12‐myristate‐13‐acetate, an activator of protein kinase C, on the signaling of structurally related human dopamine D1 and D5 receptors , 2005, Journal of neurochemistry.

[39]  B. Forbush,et al.  Regulatory phosphorylation sites in the NH2 terminus of the renal Na-K-Cl cotransporter (NKCC2). , 2005, American journal of physiology. Renal physiology.

[40]  M. Paulais,et al.  cAMP-activated chloride channel in the basolateral membrane of the thick ascending limb of the mouse kidney , 1990, The Journal of Membrane Biology.

[41]  S. Sasaki,et al.  Function of chloride channels in the kidney. , 2005, Annual review of physiology.

[42]  G. Capasso,et al.  Regulation of CLC-Ka/barttin by the ubiquitin ligase Nedd4-2 and the serum- and glucocorticoid-dependent kinases. , 2004, Kidney international.

[43]  P. Fong CLC‐K channels: if the drug fits, use it , 2004, EMBO reports.

[44]  M. Paulais,et al.  A Chloride Channel at the Basolateral Membrane of the Distal-convoluted Tubule , 2003, The Journal of general physiology.

[45]  B. Forbush,et al.  Activation of the Na-K-Cl Cotransporter NKCC1 Detected with a Phospho-specific Antibody* , 2002, The Journal of Biological Chemistry.

[46]  V. Stein,et al.  Molecular structure and physiological function of chloride channels. , 2002, Physiological reviews.

[47]  F. Marumo,et al.  Analysis of NaCl transport in thin ascending limb of Henle's loop in CLC-K1 null mice. , 2002, American journal of physiology. Renal physiology.

[48]  F. Hildebrandt,et al.  Barttin is a Cl- channel β-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion , 2001, Nature.

[49]  P. Emson,et al.  Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. , 2001, Biochimica et biophysica acta.

[50]  G. Burnstock,et al.  Axial distribution and characterization of basolateral P2Y receptors along the rat renal tubule. , 2000, Kidney international.

[51]  S. Nielsen,et al.  Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment. , 2000, American journal of physiology. Renal physiology.

[52]  H. Jockusch,et al.  Role of phosphorylation and physiological state in the regulation of the muscular chloride channel ClC-1: a voltage-clamp study on isolated M. interosseus fibers. , 1999, Biochemical and biophysical research communications.

[53]  M. Arisawa,et al.  Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel , 1999, Nature Genetics.

[54]  T. Mansfield,et al.  Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III , 1997, Nature Genetics.

[55]  F. Marumo,et al.  Phosphorylation of Serine 256 Is Required for cAMP-dependent Regulatory Exocytosis of the Aquaporin-2 Water Channel* , 1997, The Journal of Biological Chemistry.

[56]  T. Kuroki,et al.  UCN‐01, an anti‐tumor drug, is a selective inhibitor of the conventional PKC subfamily , 1995, FEBS letters.

[57]  M. Imbert-Teboul,et al.  [Functional expression of vasopressin receptors V1a and V2 along the mammalian nephron]. , 1995, Comptes rendus des seances de la Societe de biologie et de ses filiales.

[58]  M. Imai,et al.  Cell Ca2+ response to luminal vasopressin in cortical collecting tubule principal cells. , 1994, Kidney international.

[59]  M. Henman,et al.  Evaluation of dandelion for diuretic activity and variation in potassium content , 1993 .

[60]  G. Racz,et al.  THE ACTION OF TARAXACUM OFFICINALE EXTRACTS ON THE BODY WEIGHT AND DIURESIS OF LABORATORY ANIMALS , 1974, Planta medica.