Extracting low dimensional representations from large size whole slide images using deep convolutional autoencoders

[1]  Teresa Wu,et al.  Deep Residual Inception Encoder–Decoder Network for Medical Imaging Synthesis , 2020, IEEE Journal of Biomedical and Health Informatics.

[2]  Fabio A. González,et al.  Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks , 2014, Medical Imaging.

[3]  Stefanos Zafeiriou,et al.  ArcFace: Additive Angular Margin Loss for Deep Face Recognition , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Hongwei Li,et al.  Feedback Graph Attention Convolutional Network for Medical Image Enhancement , 2020, ArXiv.

[5]  Bruce A. Beckwith Standards for Digital Pathology and Whole Slide Imaging , 2016 .

[6]  Teemu Tolonen,et al.  Optimized JPEG 2000 Compression for Efficient Storage of Histopathological Whole-Slide Images , 2018, Journal of pathology informatics.

[7]  David Minnen,et al.  Full Resolution Image Compression with Recurrent Neural Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Jianzhong Wu,et al.  Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images , 2016, IEEE Transactions on Medical Imaging.

[9]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[10]  Yalei Chen,et al.  Medical image super-resolution using a relativistic average generative adversarial network , 2021 .

[11]  Shaimaa Al-Janabi,et al.  Whole slide images for primary diagnostics in dermatopathology: a feasibility study , 2011, Journal of Clinical Pathology.

[12]  Dwarikanath Mahapatra,et al.  Low Dose Abdominal CT Image Reconstruction: An Unsupervised Learning Based Approach , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[13]  Lucas Theis,et al.  Lossy Image Compression with Compressive Autoencoders , 2017, ICLR.

[14]  Lopamudra Mukherjee,et al.  Convolutional neural networks for whole slide image superresolution. , 2018, Biomedical optics express.

[15]  Peng Jiang,et al.  Unsupervised Deep Learning for Data-Driven Reliability and Risk Analysis of Engineered Systems , 2017 .

[16]  Thomas Kalinski,et al.  Lossless compression of JPEG2000 whole slide images is not required for diagnostic virtual microscopy. , 2011, American journal of clinical pathology.

[17]  Jing Li,et al.  An enhancement denoising autoencoder for rolling bearing fault diagnosis , 2018, Measurement.

[18]  Wei Yan,et al.  Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds , 2019, ArXiv.

[19]  L. Pantanowitz Digital images and the future of digital pathology , 2010, Journal of pathology informatics.

[20]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[21]  Navid Farahani,et al.  whole slide imaging in pathology: advantages, limitations, and emerging perspectives , 2015 .

[22]  Luc Van Gool,et al.  Generative Adversarial Networks for Extreme Learned Image Compression , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[23]  Nasir M. Rajpoot,et al.  Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images , 2016, IEEE Trans. Medical Imaging.

[24]  Brendan J. Frey,et al.  k-Sparse Autoencoders , 2013, ICLR.

[25]  U. Rajendra Acharya,et al.  An efficient compression of ECG signals using deep convolutional autoencoders , 2018, Cognitive Systems Research.

[26]  Yash Raut,et al.  Image Compression Using Convolutional Autoencoder , 2020 .

[27]  Mohammed Imamul Hassan Bhuiyan,et al.  X-Ray Image Compression Using Convolutional Recurrent Neural Networks , 2019, 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI).

[28]  U. Rajendra Acharya,et al.  Automated detection of COVID-19 cases using deep neural networks with X-ray images , 2020, Computers in Biology and Medicine.

[29]  Ivana Isgum,et al.  Unsupervised super-resolution: creating high-resolution medical images from low-resolution anisotropic examples , 2020, Medical Imaging.

[30]  Jiro Katto,et al.  Deep Residual Learning for Image Compression , 2019, CVPR Workshops.

[31]  Francesco Ciompi,et al.  Neural Image Compression for Gigapixel Histopathology Image Analysis , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Jian Lu,et al.  A deep network for sinogram and CT image reconstruction , 2020, ArXiv.

[33]  Vito Paolo Pastore,et al.  Convolutional autoencoder based model HistoCAE for segmentation of viable tumor regions in liver whole-slide images , 2021, Scientific reports.

[34]  U. Rajendra Acharya,et al.  Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images , 2020, Pattern Recognit. Lett..

[35]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Elizabeth A. Krupinski,et al.  American Telemedicine Association clinical guidelines for telepathology , 2014, Journal of pathology informatics.

[37]  Marcial García-Rojo,et al.  International Clinical Guidelines for the Adoption of Digital Pathology: A Review of Technical Aspects , 2016, Pathobiology.