A posteriori error estimates for optimal control problems governed by parabolic equations

Summary. In this paper, we derive a posteriori error estimates for the finite element approximation of quadratic optimal control problem governed by linear parabolic equation. We obtain a posteriori error estimates for both the state and the control approximation. Such estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive finite element approximation schemes for the control problem.

[1]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[2]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[3]  N. V. Banichuk,et al.  Mesh refinement for shape optimization , 1995 .

[4]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[5]  Claes Johnson,et al.  Numerics and hydrodynamic stability: toward error control in computational fluid dynamics , 1995 .

[6]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[7]  T. Geveci,et al.  On the approximation of the solution of an optimal control problem governed by an elliptic equation , 1979 .

[8]  Jianxin Zhou,et al.  Constrained LQR Problems in Elliptic Distributed Control Systems with Point Observations , 1996 .

[9]  J. Haslinger,et al.  Finite Element Approximation for Optimal Shape Design: Theory and Applications , 1989 .

[10]  Rüdiger Verfürth A Posteriori Error Estimates for Non-Linear Problems , 1994 .

[11]  K. Malanowski Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems , 1982 .

[12]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[13]  A Review of A Posteriori Error Estimation , 1996 .

[14]  Walter Alt,et al.  Convergence of finite element approximations to state constrained convex parabolic boundary control problems , 1989 .

[15]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[16]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[17]  John W. Barrett,et al.  Error bounds for the finite element approximation of a degenerate quasilinear parabolic variational inequality , 1993, Adv. Comput. Math..

[18]  I. Lasiecka Ritz–Galerkin Approximation of the Time Optimal Boundary Control Problem for Parabolic Systems with Dirichlet Boundary Conditions , 1984 .

[19]  John W. Barrett,et al.  Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear parabolic equations and variational inequalities , 1995 .

[20]  Rüdiger Verfürth A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..

[21]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[22]  Dan Tiba,et al.  ERROR ESTIMATES IN THE APPROXIMATION OF OPTIMIZATION PROBLEMS GOVERNED BY NONLINEAR OPERATORS , 2001 .

[23]  Fredi Tröltzsch,et al.  Error estimates for the discretization of state constrained convex control problems , 1996 .

[24]  Wenbin Liu,et al.  A Posteriori Error Estimators for a Class of Variational Inequalities , 2000, J. Sci. Comput..

[25]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[26]  J. E. Rubio,et al.  Optimality conditions for strongly monotone variational inequalities , 1993 .

[27]  Piergiorgio Alotto,et al.  Mesh adaption and optimization techniques in magnet design , 1996 .

[28]  Donald A. French,et al.  Approximation of an elliptic control problem by the finite element method , 1991 .

[29]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[30]  L. Hou,et al.  Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls , 1991 .

[31]  P. Neittaanmäki,et al.  Optimal Control of Nonlinear Parabolic Systems: Theory: Algorithms and Applications , 1994 .

[32]  Avner Friedman,et al.  Optimal control for variational inequalities , 1986 .

[33]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[34]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[35]  L. Steven Hou,et al.  Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls , 1995 .

[36]  Wenbin Liu,et al.  Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian , 2001, Numerische Mathematik.

[37]  Richard S. Falk,et al.  Approximation of a class of optimal control problems with order of convergence estimates , 1973 .

[38]  Fredi Tröltzsch,et al.  Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems—Strong convergence of optimal controls , 1994 .

[39]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[40]  WenBin Liu,et al.  Recent Advances in Mesh Adaptivity for Optimal Control Problems , 2001 .

[41]  W. E. Bosarge,et al.  The Ritz-Galerkin procedure for parabolic control problems , 1973 .

[42]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..

[43]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[44]  L. Hou,et al.  FINITE-DIMENSIONAL APPROXIMATION OFA CLASS OFCONSTRAINED NONLINEAR OPTIMAL CONTROL PROBLEMS , 1996 .

[45]  Greg Knowles,et al.  Finite Element Approximation of Parabolic Time Optimal Control Problems , 1982 .