Reducing ìTESLA memory requirements

This paper addresses secure broadcast in wireless sensor networks (WSN). We introduce new set of security protocols for broadcast operation, providing enhancements over the current set of security protocols. We introduce two protocols as an enhancement for muTESLA protocol. In these protocols we focuses on reducing the memory requirements for the broadcast session while maintain the same security level. The first protocol, Low Buffer muTESLA (LB- muTESLA), achieves 88% reduction in the node buffer size comparing to the original muTESLA protocol. The second protocol, Reversed MAC muTESLA (RM- muTESLA), achieves 92% reduction in the node buffer size comparing to the original muTESLA protocol. This reduction enables longer session's duration and reduces the memory requirement.

[1]  Donggang Liu,et al.  Multilevel μTESLA: Broadcast authentication for distributed sensor networks , 2004, TECS.

[2]  Arijit Ghosh,et al.  LORD: a localized, reactive and distributed protocol for node scheduling in wireless sensor networks , 2005, Design, Automation and Test in Europe.

[3]  Srdjan Capkun,et al.  Secure time synchronization service for sensor networks , 2005, WiSe '05.

[4]  Roberto Di Pietro,et al.  Random key-assignment for secure Wireless Sensor Networks , 2003, SASN '03.

[5]  Shiuh-Pyng Shieh,et al.  An efficient broadcast authentication scheme in wireless sensor networks , 2006, ASIACCS '06.

[6]  Bharat K. Bhargava,et al.  Low-cost attacks against packet delivery, localization and time synchronization services in under-water sensor networks , 2005, WiSe '05.

[7]  Prashant J. Shenoy,et al.  SensEye: a multi-tier camera sensor network , 2005, ACM Multimedia.

[8]  Hamdy S. Soliman,et al.  Application of synchronous dynamic encryption system (SDES) in wireless sensor networks , 2005, PE-WASUN '05.

[9]  Serhan Dagtas,et al.  Towards 3-dimensional and optimized design of wireless networks for smart environments , 2006 .

[10]  Bülent Yener,et al.  Combinatorial Design of Key Distribution Mechanisms for Wireless Sensor Networks , 2004, ESORICS.

[11]  Gregory J. Pottie,et al.  Instrumenting the world with wireless sensor networks , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[12]  Virgil D. Gligor,et al.  A key-management scheme for distributed sensor networks , 2002, CCS '02.

[13]  Kemal Ertugrul Tepe,et al.  A high performance cluster-based broadcasting algorithm for wireless ad hoc networks based on a novel gateway selection approach , 2005, PE-WASUN '05.

[14]  Deborah Estrin,et al.  Next Century Challenges: Mobile Networking for Smart Dust , 1999, MobiCom 1999.

[15]  Yunghsiang Sam Han,et al.  A pairwise key pre-distribution scheme for wireless sensor networks , 2003, CCS '03.

[16]  Bülent Yener,et al.  Combinatorial design of key distribution mechanisms for wireless sensor networks , 2007, TNET.

[17]  Bharat K. Bhargava,et al.  Key distribution and update for secure inter-group multicast communication , 2005, SASN '05.

[18]  Dawn Xiaodong Song,et al.  Random key predistribution schemes for sensor networks , 2003, 2003 Symposium on Security and Privacy, 2003..

[19]  Sasikanth Avancha,et al.  Security for Sensor Networks , 2004 .

[20]  T. Andrew Yang,et al.  Evaluations of target tracking in wireless sensor networks , 2006, SIGCSE '06.

[21]  S. Sitharama Iyengar,et al.  Sub-grid based key vector assignment: A key pre-distribution scheme for distributed sensor networks , 2007, International Journal of Pervasive Computing and Communications.

[22]  Shivakant Mishra,et al.  Security support for in-network processing in Wireless Sensor Networks , 2003, SASN '03.

[23]  Sushil Jajodia,et al.  LEAP+: Efficient security mechanisms for large-scale distributed sensor networks , 2006, TOSN.

[24]  Andrea Vitaletti,et al.  Localized techniques for broadcasting in wireless sensor networks , 2004, DIALM-POMC '04.