A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property

[1]  Qian Liu,et al.  Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene , 2008 .

[2]  E. Samulski,et al.  Synthesis of water soluble graphene. , 2008, Nano letters.

[3]  Chun Li,et al.  Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. , 2008, Journal of the American Chemical Society.

[4]  R. Stoltenberg,et al.  Evaluation of solution-processed reduced graphene oxide films as transparent conductors. , 2008, ACS nano.

[5]  Jianguo Tian,et al.  Enhanced Optical Limiting Effects in Porphyrin‐Covalently Functionalized Single‐Walled Carbon Nanotubes , 2008 .

[6]  Werner J. Blau,et al.  Nonlinear Optical Properties of Porphyrins , 2007 .

[7]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[8]  T. Umeyama,et al.  Electrophoretic Deposition of Single-Walled Carbon Nanotubes Covalently Modified with Bulky Porphyrins on Nanostructured SnO2 Electrodes for Photoelectrochemical Devices , 2007 .

[9]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[10]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[11]  S. Stankovich,et al.  Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets , 2006 .

[12]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[13]  Jianguo Tian,et al.  Covalently porphyrin-functionalized single-walled carbon nanotubes: a novel photoactive and optical limiting donor–acceptor nanohybrid , 2006 .

[14]  Sandip Niyogi,et al.  Solution properties of graphite and graphene. , 2006, Journal of the American Chemical Society.

[15]  M. P. Kothiyal,et al.  Nonlinear optical properties of a porphyrin derivative incorporated in Nafion polymer , 2005 .

[16]  D. N. Rao,et al.  Nonlinear absorption properties of ‘axial-bonding’ type tin(IV) tetratolylporphyrin based hybrid porphyrin arrays , 2005 .

[17]  Ya‐Ping Sun,et al.  Superior optical limiting performance of simple metalloporphyrin derivatives , 2005 .

[18]  Durairaj Baskaran,et al.  Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer. , 2005, Journal of the American Chemical Society.

[19]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[20]  H. Ågren,et al.  Optical limiting properties of Zinc- and Platinum-based organometallic compounds , 2004 .

[21]  Michael Hanack,et al.  Porphyrins and phthalocyanines as materials for optical limiting , 2004 .

[22]  Mark O. Liu,et al.  Microwave-assisted synthesis and reverse saturable absorption of phthalocyanines and porphyrins , 2004 .

[23]  Zhi‐Xin Guo,et al.  PVK-Modified Single-Walled Carbon Nanotubes with Effective Photoinduced Electron Transfer , 2003 .

[24]  Werner J. Blau,et al.  Material Investigation and Optical Limiting Properties of Carbon Nanotube and Nanoparticle Dispersions , 2003 .

[25]  B. Kräutler,et al.  Loading a Porphyrin with Fullerene Units , 2000 .

[26]  Maurizio Prato,et al.  Excited-State Properties of C60 Fullerene Derivatives , 2000 .

[27]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[28]  L. Sánchez,et al.  C(60)-Based Electroactive Organofullerenes. , 1998, Chemical reviews.

[29]  Arnout Ceulemans,et al.  Electron Deficiency of the Fullerenes , 1995 .

[30]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[31]  M. Kochanny,et al.  Regiospecific aryl nitration of meso-substituted tetraarylporphyrins: a simple route to bifunctional porphyrins , 1989 .