D=10 Super-Yang-Mills at O(alpha'^2)

Using superspace techniques, the complete and most general action of D=10 super-Yang--Mills theory is constructed at the alpha'^2 level. No other approximations, e.g., keeping only a subset of the allowed derivative terms, are used. The Lorentz structure of the alpha'^2 corrections is completely determined, while (depending on the gauge group) there is some freedom in the adjoint structure, which is given by a totally symmetric four-index tensor. We examine the second, non-linearly realised supersymmetry that may be present when the gauge group has a U(1) factor, and find that the constraints from linear and non-linear supersymmetry to a large extent coincide. However, the additional restrictions on the adjoint structure of the order alpha'^2 interactions following from the requirement of non-linear supersymmetry do not completely specify the symmetrised trace prescription.

[1]  D. Tsimpis,et al.  Spinorial cohomology and maximally supersymmetric theories , 2001, hep-th/0110069.

[2]  P. Koerber,et al.  The Uniqueness of the Abelian Born-Infeld action , 2001, hep-th/0103015.

[3]  D. Tsimpis,et al.  The Structure of Maximally Supersymmetric Yang-Mills Theory: Constraining Higher-Order Corrections , 2001, hep-th/0102009.

[4]  W. Troost,et al.  The non-abelian Born–Infeld action at order F6 , 2001, hep-th/0101192.

[5]  E. Bergshoeff,et al.  On the supersymmetric non-abelian Born-Infeld action , 2000, hep-th/0011264.

[6]  N. Wyllard Derivative corrections to D-brane actions with constant background fields , 2000, hep-th/0008125.

[7]  L. Cornalba On the general structure of the non-abelian Born–Infeld action , 2000, hep-th/0006018.

[8]  L. Cornalba Corrections to the abelian Born-Infeld action arising from noncommutative geometry , 1999, hep-th/9912293.

[9]  Roberto C. Myers Dielectric-Branes , 1999, hep-th/9910053.

[10]  Y. Okawa Derivative corrections to Dirac–Born–Infeld Lagrangian and non-commutative gauge theory , 1999, hep-th/9909132.

[11]  E. Witten,et al.  String theory and noncommutative geometry , 1999, hep-th/9908142.

[12]  A. Tseytlin Born-Infeld action, supersymmetry and string theory , 1999, hep-th/9908105.

[13]  P. Howe,et al.  On brane actions and superembeddings , 1998, hep-th/9804051.

[14]  Tom Adawi,et al.  SUPEREMBEDDINGS, NONLINEAR SUPERSYMMETRY AND FIVE-BRANES , 1997, International Journal of Modern Physics A.

[15]  M. Douglas,et al.  D-branes and matrix theory in curved space , 1997, hep-th/9707228.

[16]  A. Hashimoto,et al.  Fluctuation spectra of tilted and intersecting D-branes from the Born-Infeld action , 1997, hep-th/9703217.

[17]  J. Schwarz,et al.  Gauge invariant and gauge fixed D-brane actions , 1996, hep-th/9612080.

[18]  M. Cederwall,et al.  The Dirichlet super- p-branes in ten-dimensional type IIA and IIB supergravity , 1996, hep-th/9611159.

[19]  J. Schwarz,et al.  D-brane actions with local kappa symmetry☆ , 1996, hep-th/9610249.

[20]  M. Cederwall,et al.  The Dirichlet super three-brane in ten-dimensional type IIB supergravity , 1996, hep-th/9610148.

[21]  J. Bagger,et al.  New Goldstone multiplet for partially broken supersymmetry , 1996, hep-th/9608177.

[22]  E. Witten Bound states of strings and p-branes , 1995, hep-th/9510135.

[23]  A. Tseytlin,et al.  Partition-function representation for the open superstring effective action: . Cancellation of Möbius infinites and derivative corrections to Born-Infeld lagrangian , 1988 .

[24]  A. Tseytlin Renormalization of Möbius infinities and partition function representation for the string theory effective action , 1988 .

[25]  E. Sezgin,et al.  HIGHER DERIVATIVE SUPER YANG-MILLS THEORIES , 1987 .

[26]  B. Nilsson Pure spinors as auxiliary fields in the ten-dimensional supersymmetric Yang-Mills theory , 1986 .

[27]  E. Fradkin,et al.  Non-linear electrodynamics from quantized strings , 1985 .

[28]  M. Waldrop Supersymmetry and supergravity. , 1983, Science.

[29]  L. Infeld,et al.  Foundations of the New Field Theory , 1933, Nature.

[30]  D. Tsimpis,et al.  D=10 Super-yang–mills at O(α  ) , 2001 .

[31]  K. Savvidy RECOMMENDED FOR ACCEPTANCE , 1999 .

[32]  S. Gates,et al.  On D = 10, N = 1 supersymmetry, superspace geometry, and superstring effects (II) , 1987 .

[33]  Y. Kitazawa Effective lagrangian for the open superstring from a 5-point function , 1987 .

[34]  D. Gross,et al.  Superstring Modifications of Einstein's Equations , 1986 .