Stability and reliable data reconstruction of uncertain dynamic systems over finite capacity channels

In this paper we present an encoder, decoder and a stabilizing controller for reliable data reconstruction and robust stability of uncertain dynamic systems controlled over Additive White Gaussian Noise (AWGN) channels. The uncertainty in the dynamic system is described by a relative entropy constraint. Such an uncertainty description is a natural stochastic generalization of the sum quadratic uncertainty description. This paper complements the results of Farhadi and Charalambous (2008) by showing that the necessary condition presented there can be tight. This is shown by designing an encoder, decoder and a stabilizing controller.

[1]  Tomomichi Hagiwara Nyquist stability criterion and positive-realness of sampled-data systems , 2002, Syst. Control. Lett..

[2]  Robin J. Evans,et al.  Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..

[3]  Andrey V. Savkin,et al.  The problem of optimal robust Kalman state estimation via limited capacity digital communication channels , 2005, Syst. Control. Lett..

[4]  Ian R. Petersen,et al.  Performance analysis and controller synthesis for nonlinear systems with stochastic uncertainty constraints , 1996, Autom..

[5]  P. Whittle Risk-sensitive linear/quadratic/gaussian control , 1981, Advances in Applied Probability.

[6]  J. H. van Schuppen,et al.  System identification with information theoretic criteria , 1995 .

[7]  P. Dupuis,et al.  Minimax optimal control of stochastic uncertain systems with relative entropy constraints , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[8]  Nicola Elia,et al.  When bode meets shannon: control-oriented feedback communication schemes , 2004, IEEE Transactions on Automatic Control.

[9]  P. Caines Linear Stochastic Systems , 1988 .

[10]  Michael Gastpar,et al.  To code, or not to code: lossy source-channel communication revisited , 2003, IEEE Trans. Inf. Theory.

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  J. Massey CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .

[13]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[14]  Munther A. Dahleh,et al.  Feedback stabilization of uncertain systems in the presence of a direct link , 2006, IEEE Transactions on Automatic Control.

[15]  Ian R. Petersen,et al.  Set-valued state estimation via a limited capacity communication channel , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[16]  Wolfgang J. Runggaldier,et al.  Connections between stochastic control and dynamic games , 1996, Math. Control. Signals Syst..

[17]  John Baillieul,et al.  Robust quantization for digital finite communication bandwidth (DFCB) control , 2004, IEEE Transactions on Automatic Control.

[18]  Sekhar Tatikonda,et al.  Stochastic linear control over a communication channel , 2004, IEEE Transactions on Automatic Control.

[19]  T. Kailath,et al.  Indefinite-quadratic estimation and control: a unified approach to H 2 and H ∞ theories , 1999 .

[20]  Charalambos D. Charalambous,et al.  Robust coding for a class of sources: Applications in control and reliable communication over limited capacity channels , 2008, Syst. Control. Lett..

[21]  João Pedro Hespanha,et al.  Stabilization of nonlinear systems with limited information feedback , 2005, IEEE Transactions on Automatic Control.

[22]  Andrey V. Savkin,et al.  Shannon zero error capacity in the problems of state estimation and stabilization via noisy communication channels , 2007, Int. J. Control.

[23]  Tamer Basar,et al.  Communication Constraints for Decentralized Stabilizability With Time-Invariant Policies , 2007, IEEE Transactions on Automatic Control.

[24]  Ian R. Petersen,et al.  A connection between H∞ control and the absolute stabilizability of discrete-time uncertain linear systems , 1995, Autom..

[25]  Tamer Basar,et al.  Simultaneous design of measurement and control strategies for stochastic systems with feedback , 1989, Autom..

[26]  Babak Hassibi,et al.  Indefinite-Quadratic Estimation And Control , 1987 .

[27]  Charalambos D. Charalambous,et al.  LQG optimality and separation principle for general discrete time partially observed stochastic systems over finite capacity communication channels , 2008, Autom..

[28]  Matthew,et al.  An Information-State Approach to Risk Sensitive Tracking Problems , 1994 .

[29]  DAVID J. SAKRISON,et al.  The Rate Distortion Function for a Class of Sources , 1969, Inf. Control..

[30]  R. Evans,et al.  Topological feedback entropy for nonlinear stabilization , 2004 .