Mechanism of coupling drug transport reactions located in two different membranes

Gram- negative bacteria utilize a diverse array of multidrug transporters to pump toxic compounds out of the cell. Some transporters, together with periplasmic membrane fusion proteins (MFPs) and outer membrane channels, assemble trans-envelope complexes that expel multiple antibiotics across outer membranes of Gram-negative bacteria and into the external medium. Others further potentiate this efflux by pumping drugs across the inner membrane into the periplasm. Together these transporters create a powerful network of efflux that protects bacteria against a broad range of antimicrobial agents. This review is focused on the mechanism of coupling transport reactions located in two different membranes of Gram-negative bacteria. Using a combination of biochemical, genetic and biophysical approaches we have reconstructed the sequence of events leading to the assembly of trans-envelope drug efflux complexes and characterized the roles of periplasmic and outer membrane proteins in this process. Our recent data suggest a critical step in the activation of intermembrane efflux pumps, which is controlled by MFPs. We propose that the reaction cycles of transporters are tightly coupled to the assembly of the trans-envelope complexes. Transporters and MFPs exist in the inner membrane as dormant complexes. The activation of complexes is triggered by MFP binding to the outer membrane channel, which leads to a conformational change in the membrane proximal domain of MFP needed for stimulation of transporters. The activated MFP-transporter complex engages the outer membrane channel to expel substrates across the outer membrane. The recruitment of the channel is likely triggered by binding of effectors (substrates) to MFP or MFP-transporter complexes. This model together with recent structural and functional advances in the field of drug efflux provides a fairly detailed understanding of the mechanism of drug efflux across the two membranes.

[1]  K. Diederichs,et al.  Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB , 2014, eLife.

[2]  N. Paterson,et al.  Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump , 2014, FEBS letters.

[3]  M. McEvoy,et al.  Mechanism of ATPase-mediated Cu+ Export and Delivery to Periplasmic Chaperones , 2014, The Journal of Biological Chemistry.

[4]  Nitin Kumar,et al.  Crystal Structure of the Open State of the Neisseria gonorrhoeae MtrE Outer Membrane Channel , 2014, PloS one.

[5]  Wah Chiu,et al.  Structure of the AcrAB-TolC multidrug efflux pump , 2014, Nature.

[6]  Dennis Gessmann,et al.  Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA , 2014, Proceedings of the National Academy of Sciences.

[7]  Jon W. Weeks,et al.  Genetic assessment of the role of AcrB β‐hairpins in the assembly of the TolC–AcrAB multidrug efflux pump of Escherichia coli , 2014, Molecular microbiology.

[8]  Karl A. Hassan,et al.  Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins , 2013, Proceedings of the National Academy of Sciences.

[9]  A. Ababou,et al.  Structure of an atypical periplasmic adaptor from a multidrug efflux pump of the spirochete Borrelia burgdorferi , 2013, FEBS letters.

[10]  H. Zgurskaya,et al.  MacA, a Periplasmic Membrane Fusion Protein of the Macrolide Transporter MacAB-TolC, Binds Lipopolysaccharide Core Specifically and with High Affinity , 2013, Journal of bacteriology.

[11]  R. Freudl Leaving home ain't easy: protein export systems in Gram-positive bacteria. , 2013, Research in microbiology.

[12]  C. Su,et al.  Structural mechanisms of heavy-metal extrusion by the Cus efflux system , 2013, BioMetals.

[13]  A. Walmsley,et al.  Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump , 2013, Molecular microbiology.

[14]  H. Zgurskaya,et al.  On the role of TolC in multidrug efflux: the function and assembly of AcrAB–TolC tolerate significant depletion of intracellular TolC protein , 2013, Molecular microbiology.

[15]  H. Zgurskaya,et al.  Role of ATP binding and hydrolysis in assembly of MacAB–TolC macrolide transporter , 2012, Molecular microbiology.

[16]  G. Storz,et al.  Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance , 2012, Proceedings of the National Academy of Sciences.

[17]  K. Rajashankar,et al.  Charged amino acids (R83, E567, D617, E625, R669, and K678) of CusA are required for metal ion transport in the Cus efflux system. , 2012, Journal of molecular biology.

[18]  J. Whitelegge,et al.  Dissection of mechanistic principles of a secondary multidrug efflux protein. , 2012, Molecular cell.

[19]  H. Zgurskaya,et al.  YknWXYZ Is an Unusual Four-Component Transporter with a Role in Protection against Sporulation-Delaying-Protein-Induced Killing of Bacillus subtilis , 2012, Journal of bacteriology.

[20]  H. Nikaido,et al.  Different functions of MdtB and MdtC subunits in the heterotrimeric efflux transporter MdtB(2)C complex of Escherichia coli. , 2012, Biochemistry.

[21]  Kangnian Fan,et al.  Interdomain flexibility and pH-induced conformational changes of AcrA revealed by molecular dynamics simulations. , 2012, The journal of physical chemistry. B.

[22]  H. Nikaido,et al.  Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. , 2012, FEMS microbiology reviews.

[23]  J. Argüello,et al.  Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence. , 2011, Biochemistry.

[24]  H. Kaback,et al.  Lactose permease and the alternating access mechanism. , 2011, Biochemistry.

[25]  H. Zgurskaya,et al.  The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter , 2011, Molecular microbiology.

[26]  T. Silhavy,et al.  β-Barrel membrane protein assembly by the Bam complex. , 2011, Annual review of biochemistry.

[27]  H. Zgurskaya,et al.  Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC. , 2011, Chemistry & biology.

[28]  D. Goodlett,et al.  Interactions between CusF and CusB identified by NMR spectroscopy and chemical cross-linking coupled to mass spectrometry. , 2011, Biochemistry.

[29]  A. Moeller,et al.  Funnel-like Hexameric Assembly of the Periplasmic Adapter Protein in the Tripartite Multidrug Efflux Pump in Gram-negative Bacteria* , 2011, The Journal of Biological Chemistry.

[30]  M. McEvoy,et al.  Switch or Funnel: How RND-Type Transport Systems Control Periplasmic Metal Homeostasis , 2011, Journal of Bacteriology.

[31]  M. Surette,et al.  Inactivation of MuxABC-OpmB transporter system in Pseudomonas aeruginosa leads to increased ampicillin and carbenicillin resistance and decreased virulence , 2011, The Journal of Microbiology.

[32]  R. Jernigan,et al.  Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli , 2011, Nature.

[33]  Hyun-soo Cho,et al.  Functional Implications of an Intermeshing Cogwheel-like Interaction between TolC and MacA in the Action of Macrolide-specific Efflux Pump MacAB-TolC* , 2011, The Journal of Biological Chemistry.

[34]  R. Benz,et al.  Structures of sequential open states in a symmetrical opening transition of the TolC exit duct , 2011, Proceedings of the National Academy of Sciences.

[35]  B. van den Berg,et al.  Crystal Structure of Escherichia coli CusC, the Outer Membrane Component of a Heavy Metal Efflux Pump , 2011, PloS one.

[36]  Michelle C. Swick,et al.  Expression of Multidrug Efflux Pump Genes acrAB-tolC, mdfA, and norE in Escherichia coli Clinical Isolates as a Function of Fluoroquinolone and Multidrug Resistance , 2010, Antimicrobial Agents and Chemotherapy.

[37]  J. Tommassen,et al.  Assembly of outer-membrane proteins in bacteria and mitochondria. , 2010, Microbiology.

[38]  R. A. Robbins,et al.  Metal-induced conformational changes in ZneB suggest an active role of membrane fusion proteins in efflux resistance systems , 2010, Proceedings of the National Academy of Sciences.

[39]  Jon W. Weeks,et al.  AcrA suppressor alterations reverse the drug hypersensitivity phenotype of a TolC mutant by inducing TolC aperture opening , 2010, Molecular microbiology.

[40]  H. Nikaido,et al.  Multidrug Efflux Pump MdtBC of Escherichia coli Is Active Only as a B2C Heterotrimer , 2009, Journal of bacteriology.

[41]  T. Tsuchiya,et al.  Gene cloning and characteristics of the RND-type multidrug efflux pump MuxABC-OpmB possessing two RND components in Pseudomonas aeruginosa. , 2009, Microbiology.

[42]  L. Martínez-Martínez,et al.  Klebsiella pneumoniae AcrAB Efflux Pump Contributes to Antimicrobial Resistance and Virulence , 2009, Antimicrobial Agents and Chemotherapy.

[43]  D. Reyon,et al.  Crystal structure of the membrane fusion protein CusB from Escherichia coli. , 2009, Journal of molecular biology.

[44]  K. Bostian,et al.  Bacterial Multidrug Transporters: Molecular and Clinical Aspects , 2009 .

[45]  H. Zgurskaya,et al.  Kinetic control of TolC recruitment by multidrug efflux complexes , 2009, Proceedings of the National Academy of Sciences.

[46]  H. Zgurskaya,et al.  The C-Terminal Domain of AcrA Is Essential for the Assembly and Function of the Multidrug Efflux Pump AcrAB-TolC , 2009, Journal of bacteriology.

[47]  H. Zgurskaya,et al.  Structural and functional diversity of bacterial membrane fusion proteins. , 2009, Biochimica et biophysica acta.

[48]  E. Bibi,et al.  Bacterial multidrug transport through the lens of the major facilitator superfamily. , 2009, Biochimica et biophysica acta.

[49]  K. M. Pos Drug transport mechanism of the AcrB efflux pump. , 2009, Biochimica et biophysica acta.

[50]  Colin Hughes,et al.  The assembled structure of a complete tripartite bacterial multidrug efflux pump , 2009, Proceedings of the National Academy of Sciences.

[51]  Kangseok Lee,et al.  Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. , 2009, Journal of molecular biology.

[52]  Jue Chen,et al.  Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems , 2008, Microbiology and Molecular Biology Reviews.

[53]  Nicholas Furnham,et al.  Assembly and Channel Opening in a Bacterial Drug Efflux Machine , 2008, Molecular cell.

[54]  R. Benz,et al.  An RND-Type Efflux System in Borrelia burgdorferi Is Involved in Virulence and Resistance to Antimicrobial Compounds , 2008, PLoS pathogens.

[55]  K. Lewis,et al.  Multidrug Effl ux Pumps: Structure, Mechanism, and Inhibition , 2007 .

[56]  H. Zgurskaya,et al.  Fitting Periplasmic Membrane Fusion Proteins to Inner Membrane Transporters: Mutations That Enable Escherichia coli AcrA To Function with Pseudomonas aeruginosa MexB , 2007, Journal of bacteriology.

[57]  H. Schweizer,et al.  Identification and Characterization of TriABC-OpmH, a Triclosan Efflux Pump of Pseudomonas aeruginosa Requiring Two Membrane Fusion Proteins , 2007, Journal of bacteriology.

[58]  K. Poole,et al.  Assembly of the MexAB-OprM Multidrug Pump of Pseudomonas aeruginosa: Component Interactions Defined by the Study of Pump Mutant Suppressors , 2007, Journal of bacteriology.

[59]  E. Bokma,et al.  A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps , 2007, Proceedings of the National Academy of Sciences.

[60]  S. Lau,et al.  Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB , 2007, Molecular microbiology.

[61]  E. Bokma,et al.  Directed evolution of a bacterial efflux pump: Adaptation of the E. coli TolC exit duct to the Pseudomonas MexAB translocase , 2006, FEBS letters.

[62]  M. Sansom,et al.  Flexibility in a drug transport accessory protein: molecular dynamics simulations of MexA. , 2006, Biophysical journal.

[63]  Bronwyn G. Butcher,et al.  Identification of Bacillus subtilis σW‐dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli , 2006, Molecular microbiology.

[64]  H. Zgurskaya,et al.  Conformational flexibility in the multidrug efflux system protein AcrA. , 2006, Structure.

[65]  H. Schweizer,et al.  Substrate-Dependent Utilization of OprM or OpmH by the Pseudomonas aeruginosa MexJK Efflux Pump , 2005, Antimicrobial Agents and Chemotherapy.

[66]  Hiroyoshi Matsumura,et al.  The Crystal Structure of the Outer Membrane Protein VceC from the Bacterial Pathogen Vibrio cholerae at 1.8 Å Resolution* , 2005, Journal of Biological Chemistry.

[67]  S. Diggle,et al.  The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. , 2005, Microbiology.

[68]  Masato Yoshimura,et al.  Crystal Structure of the Drug Discharge Outer Membrane Protein, OprM, of Pseudomonas aeruginosa , 2004, Journal of Biological Chemistry.

[69]  Henri G. Gerken,et al.  Genetic evidence for functional interactions between TolC and AcrA proteins of a major antibiotic efflux pump of Escherichia coli , 2004, Molecular microbiology.

[70]  K. Linton,et al.  The ATP switch model for ABC transporters , 2004, Nature Structural &Molecular Biology.

[71]  H. Tsuge,et al.  Amino‐Acid Residues Involved in the Expression of the Activity of Escherichia coli TolC , 2004, Microbiology and immunology.

[72]  T. Tsukihara,et al.  Crystal Structure of the Membrane Fusion Protein, MexA, of the Multidrug Transporter in Pseudomonas aeruginosa* , 2004, Journal of Biological Chemistry.

[73]  T. Tsukihara,et al.  Crystal structure of the membrane fusion protein, MexA of the multidrug transporter , 2004 .

[74]  Jun Liu,et al.  pH-induced Conformational Changes of AcrA, the Membrane Fusion Protein of Escherichia coli Multidrug Efflux System* , 2003, Journal of Biological Chemistry.

[75]  J. Dubochet,et al.  Cryo-Transmission Electron Microscopy of Frozen-Hydrated Sections of Escherichia coli and Pseudomonas aeruginosa , 2003, Journal of bacteriology.

[76]  C. Elkins,et al.  Chimeric Analysis of AcrA Function Reveals the Importance of Its C-Terminal Domain in Its Interaction with the AcrB Multidrug Efflux Pump , 2003, Journal of bacteriology.

[77]  T. Tsuchiya,et al.  Functional Cloning and Characterization of a Multidrug Efflux Pump, MexHI-OpmD, from a Pseudomonas aeruginosa Mutant , 2003, Antimicrobial Agents and Chemotherapy.

[78]  Milton H Saier,et al.  The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. , 2003, European journal of biochemistry.

[79]  Satoshi Murakami,et al.  Crystal structure of bacterial multidrug efflux transporter AcrB , 2002, Nature.

[80]  E. Bokma,et al.  Transition to the open state of the TolC periplasmic tunnel entrance , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[81]  H. Nikaido,et al.  The BaeSR Two-Component Regulatory System Activates Transcription of the yegMNOB (mdtABCD) Transporter Gene Cluster in Escherichia coli and Increases Its Resistance to Novobiocin and Deoxycholate , 2002, Journal of bacteriology.

[82]  K. Okamoto,et al.  Site-directed mutagenesis studies of the amino acid residue at position 412 of Escherichia coli TolC which is required for the activity. , 2002, Microbial pathogenesis.

[83]  P. Cornelis,et al.  Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. , 2002, Microbiology.

[84]  A. Yamaguchi,et al.  The Putative Response Regulator BaeR Stimulates Multidrug Resistance of Escherichia coli via a Novel Multidrug Exporter System, MdtABC , 2002, Journal of bacteriology.

[85]  Yufeng Zhai,et al.  Protein-translocating outer membrane porins of Gram-negative bacteria. , 2002, Biochimica et biophysica acta.

[86]  M H Saier,et al.  Phylogeny of multidrug transporters. , 2001, Seminars in cell & developmental biology.

[87]  K. Poole,et al.  Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. , 2001, Current topics in medicinal chemistry.

[88]  M. Saier,et al.  SMR-type multidrug resistance pumps. , 2001, Current opinion in drug discovery & development.

[89]  I. Paulsen,et al.  Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. , 2000, Journal of molecular biology.

[90]  H. Nikaido,et al.  Cross-Linked Complex between Oligomeric Periplasmic Lipoprotein AcrA and the Inner-Membrane-Associated Multidrug Efflux Pump AcrB from Escherichia coli , 2000, Journal of bacteriology.

[91]  Hiroshi Nikaido,et al.  Multidrug resistance mechanisms: drug efflux across two membranes , 2000, Molecular microbiology.

[92]  Colin Hughes,et al.  Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export , 2000, Nature.

[93]  M H Saier,et al.  The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. , 1999, Journal of molecular microbiology and biotechnology.

[94]  H. Nikaido,et al.  Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[95]  T. Köhler,et al.  In Vivo Emergence of Multidrug-Resistant Mutants ofPseudomonas aeruginosa Overexpressing the Active Efflux System MexA-MexB-OprM , 1999, Antimicrobial Agents and Chemotherapy.

[96]  H. Nikaido,et al.  AcrA is a highly asymmetric protein capable of spanning the periplasm. , 1999, Journal of molecular biology.

[97]  V. Koronakis,et al.  Substrate‐induced assembly of a contiguous channel for protein export from E.coli: reversible bridging of an inner‐membrane translocase to an outer membrane exit pore , 1998, The EMBO journal.

[98]  I. Paulsen,et al.  Characterization of the Earliest KnownStaphylococcus aureus Plasmid Encoding a Multidrug Efflux System , 1998, Journal of bacteriology.

[99]  I. Paulsen,et al.  Major Facilitator Superfamily , 1998, Microbiology and Molecular Biology Reviews.

[100]  H. Nikaido,et al.  The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump , 1997, Journal of bacteriology.

[101]  M H Saier,et al.  A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. , 1997, FEMS microbiology letters.

[102]  K. Gunderson,et al.  Conformational states of CFTR associated with channel gating: The role of ATP binding and hydrolysis , 1995, Cell.

[103]  H. Nikaido,et al.  Porin channels in intact cells of Escherichia coli are not affected by Donnan potentials across the outer membrane. , 1988, The Journal of biological chemistry.

[104]  H. Nikaido,et al.  Preparation and reconstitution of membrane-associated maltose transporter complex of Escherichia coli. , 1998, Methods in enzymology.