Robust multidimensional pricing: separation without regret

We study a robust monopoly pricing problem with a minimax regret objective, where a seller endeavors to sell multiple goods to a single buyer, only knowing that the buyer’s values for the goods range over a rectangular uncertainty set. We interpret this pricing problem as a zero-sum game between the seller, who chooses a selling mechanism, and a fictitious adversary or ‘nature’, who chooses the buyer’s values from within the uncertainty set. Using duality techniques rooted in robust optimization, we prove that this game admits a Nash equilibrium in mixed strategies that can be computed in closed form. The Nash strategy of the seller is a randomized posted price mechanism under which the goods are sold separately, while the Nash strategy of nature is a distribution on the uncertainty set under which the buyer’s values are comonotonic. We further show that the restriction of the pricing problem to deterministic mechanisms is solved by a deteministic posted price mechanism under which the goods are sold separately.

[1]  Rakesh V. Vohra,et al.  Optimization and mechanism design , 2012, Mathematical Programming.

[2]  Christos Tzamos,et al.  The Complexity of Optimal Mechanism Design , 2012, SODA.

[3]  J. Lagarias Euler's constant: Euler's work and modern developments , 2013, 1303.1856.

[4]  Martin Bichler,et al.  Market Design: A Linear Programming Approach to Auctions and Matching , 2017 .

[5]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[6]  Mustafa Ç. Pinar,et al.  Robust screening under ambiguity , 2017, Math. Program..

[7]  Humberto Moreira,et al.  Optimal selling mechanisms under moment conditions , 2018, J. Econ. Theory.

[8]  C. Daskalakis,et al.  Strong Duality for a Multiple‐Good Monopolist , 2017 .

[9]  Noam Nisan,et al.  The menu-size complexity of auctions , 2013, EC '13.

[10]  Gabriel D. Carroll Robustness and Separation in Multidimensional Screening , 2017 .

[11]  Andrew Chi-Chih Yao,et al.  On revenue maximization for selling multiple independently distributed items , 2013, Proceedings of the National Academy of Sciences.

[12]  Hemant K. Bhargava,et al.  Mixed Bundling of Two Independently Valued Goods , 2013, Manag. Sci..

[13]  Peng Sun,et al.  Bidder collusion at first-price auctions , 2011 .

[14]  Leonard J. Savage,et al.  The Theory of Statistical Decision , 1951 .

[15]  Nick Gravin,et al.  Separation in Correlation-Robust Monopolist Problem with Budget , 2018, SODA.

[16]  Alejandro M. Manelli,et al.  Bundling as an optimal selling mechanism for a multiple-good monopolist , 2006, J. Econ. Theory.

[17]  R. Zeckhauser,et al.  Optimal Selling Strategies: When to Haggle, When to Hold Firm , 1983 .

[18]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[19]  John Thanassoulis,et al.  Haggling over substitutes , 2004, J. Econ. Theory.

[20]  Elias Koutsoupias,et al.  Duality and optimality of auctions for uniform distributions , 2014, EC.

[21]  Berç Rustem,et al.  Pessimistic Bilevel Optimization , 2013, SIAM J. Optim..

[22]  Elana Guslitser UNCERTAINTY- IMMUNIZED SOLUTIONS IN LINEAR PROGRAMMING , 2002 .

[23]  Dimitris Bertsimas,et al.  Optimal Design for Multi-Item Auctions: A Robust Optimization Approach , 2014, Math. Oper. Res..

[24]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[25]  Dirk Bergemann,et al.  Robust Monopoly Pricing , 2008, J. Econ. Theory.

[26]  M. Satterthwaite,et al.  Efficient Mechanisms for Bilateral Trading , 1983 .

[27]  D. Bergemann,et al.  Pricing Without Priors , 2007 .

[28]  Shabbir Ahmed,et al.  Robust strategic bidding in auction-based markets , 2019, Eur. J. Oper. Res..

[29]  Christos Tzamos,et al.  Mechanism design via optimal transport , 2013, EC '13.