A polygonal discontinuous Galerkin method with minus one stabilization

We propose a discontinuous Galerkin method for the Poisson equation on polygonal tessellations in two dimensions, stabilized by penalizing, locally in each element K, a residual term involving the fluxes, measured in the norm of the dual of H1 (K). The scalar product corresponding to such a norm is numerically realized via the introduction of a (minimal) auxiliary space inspired by the Virtual Element Method. Stability and optimal error estimates in the broken H1 norm are proven under a weak shape regularity assumption allowing the presence of very small edges. The results of numerical tests confirm the theoretical estimates.

[1]  Lourenco Beirao da Veiga,et al.  Stability Analysis for the Virtual Element Method , 2016, 1607.05988.

[2]  Daniel Loghin,et al.  Discrete Interpolation Norms with Applications , 2009, SIAM J. Numer. Anal..

[3]  Alessandro Colombo,et al.  Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations , 2012 .

[4]  Susanne C. Brenner,et al.  Virtual element methods on meshes with small edges or faces , 2017, Mathematical Models and Methods in Applied Sciences.

[5]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[6]  Jacek Banasiak,et al.  On Mixed Boundary Value Problems of Dirichlet Oblique-Derivative Type in Plane Domains with Piecewise Differentiable Boundary , 1989 .

[7]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[8]  L. D. Marini,et al.  Stabilization mechanisms in discontinuous Galerkin finite element methods , 2006 .

[9]  Ilaria Perugia,et al.  A p-robust polygonal discontinuous Galerkin method with minus one stabilization , 2020, Mathematical Models and Methods in Applied Sciences.

[10]  Stefano Giani,et al.  Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains , 2016, IEEE CSE 2016.

[11]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[12]  Diego Paredes,et al.  Multiscale Hybrid-Mixed Method , 2013, SIAM J. Numer. Anal..

[13]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[14]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[15]  Diego Paredes,et al.  The multiscale hybrid mixed method in general polygonal meshes , 2020, Numerische Mathematik.

[16]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[17]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[18]  Jay Gopalakrishnan A CLASS OF DISCONTINUOUS PETROV-GALERKIN METHODS. PART II: OPTIMAL TEST FUNCTIONS , 2009 .

[19]  Panayot S. Vassilevski,et al.  Computational scales of Sobolev norms with application to preconditioning , 2000, Math. Comput..

[20]  Silvia Bertoluzza Algebraic representation of dual scalar products and stabilization of saddle point problems , 2019, ArXiv.

[21]  Leszek Demkowicz,et al.  A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .

[22]  Béatrice Rivière,et al.  Sub-optimal Convergence of Non-symmetric Discontinuous Galerkin Methods for Odd Polynomial Approximations , 2009, J. Sci. Comput..

[23]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[24]  Silvia Bertoluzza,et al.  Stabilization of the nonconforming virtual element method , 2021, Comput. Math. Appl..

[25]  Ilaria Perugia,et al.  Non-conforming Harmonic Virtual Element Method: $$h$$h- and $$p$$p-Versions , 2018, J. Sci. Comput..

[26]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[27]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[28]  S. Bertoluzza Stabilization by multiscale decomposition , 1998 .

[29]  P. Raviart,et al.  Primal hybrid finite element methods for 2nd order elliptic equations , 1977 .

[30]  Samuel Williams,et al.  An Efficient Multicore Implementation of a Novel HSS-Structured Multifrontal Solver Using Randomized Sampling , 2015, SIAM J. Sci. Comput..

[31]  Richard E. Ewing,et al.  A stabilized discontinuous finite element method for elliptic problems , 2003, Numer. Linear Algebra Appl..

[32]  Silvia Bertoluzza,et al.  Stable Discretizations of Convection-Diffusion Problems via Computable Negative-Order Inner Products , 2000, SIAM J. Numer. Anal..

[33]  Alexandre Ern,et al.  An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators , 2014, Comput. Methods Appl. Math..