Outage and Throughput Performance of Half/Full-Duplex UAV-Assisted Co-Operative Relay Networks Over Weibull Fading Channel

The usage of unmanned aerial vehicle (UAV) as a cooperative mobile relay is considered to be a promising technique to enhance the performance of future wireless networks. This paper studies the system performance of a dual hop decode and forward, full/half duplex (FD/HD) UAV assisted relay systems, in the presence of direct link between source and the destination. A radio frequency based energy harvesting mechanism underlying simultaneous wireless information and power transfer technique is employed at the UAV to improve the system energy efficiency. For the proposed system design, we derive a closed-form expression for outage probability and system throughput with respect to the key metrics such as transmit power and time splitting factor over generalised weibull fading channel. The impact of self-interference effect on the system performance is studied in different aspects. The obtained results demonstrated that, increasing the fading parameter $$(\beta)$$ improves the overall system performance, significantly. In addition, FD operation with selection combining at the receiver offers an improved performance as compared to HD systems. Finally, the numerical simulation results are given, in order to validate the derived expressions.

[1]  A. S. Madhukumar,et al.  Outage Analysis and Finite SNR Diversity-Multiplexing Tradeoff of Hybrid-Duplex Systems for Aeronautical Communications , 2017, IEEE Transactions on Wireless Communications.

[2]  Walid Saad,et al.  A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems , 2018, IEEE Communications Surveys & Tutorials.

[3]  Dushantha Nalin K. Jayakody,et al.  Analysis of time-switching and power-splitting protocols in wireless-powered cooperative communication system , 2018, Phys. Commun..

[4]  On the performance of wireless powered communication networks over generalized κ-μ fading channels , 2019, Phys. Commun..

[5]  Fulvio Babich,et al.  Statistical analysis and characterization of the indoor propagation channel , 2000, IEEE Trans. Commun..

[6]  Derrick Wing Kwan Ng,et al.  Simultaneous wireless information and power transfer in modern communication systems , 2014, IEEE Communications Magazine.

[7]  He Chen,et al.  Harvest-Then-Cooperate: Wireless-Powered Cooperative Communications , 2014, IEEE Transactions on Signal Processing.

[8]  Christos G. Christodoulou,et al.  Use of Weibull distribution for describing outdoor multipath fading , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[9]  Chintha Tellambura,et al.  Wireless-Powered Full-Duplex Relay and Friendly Jamming for Secure Cooperative Communications , 2019, IEEE Transactions on Information Forensics and Security.

[10]  Ali A. Nasir,et al.  Relaying Protocols for Wireless Energy Harvesting and Information Processing , 2012, IEEE Transactions on Wireless Communications.

[11]  Zhu Han,et al.  Wireless Networks With RF Energy Harvesting: A Contemporary Survey , 2014, IEEE Communications Surveys & Tutorials.

[12]  Mazen O. Hasna,et al.  Self-Energized UAV-Assisted Scheme for Cooperative Wireless Relay Networks , 2020, IEEE Transactions on Vehicular Technology.

[13]  Dushantha Nalin K. Jayakody,et al.  Outage Performance Comparison of Dual-Hop Half/Full Duplex Wireless UAV System over Weibull Fading Channel , 2020, 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET).

[14]  Kaigui Bian,et al.  UAV Relaying: Power Allocation and Trajectory Optimization Using Decode-and-Forward Protocol , 2018, 2018 IEEE International Conference on Communications Workshops (ICC Workshops).

[15]  Mohamed-Slim Alouini,et al.  A Survey of Channel Modeling for UAV Communications , 2018, IEEE Communications Surveys & Tutorials.

[16]  Dushantha Nalin K. Jayakody,et al.  UAV-assisted Data Collection in Wireless Powered Sensor Networks over Multiple Fading Channels , 2020, IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[17]  Mohamed-Slim Alouini,et al.  Performance of generalized selection combining over Weibull fading channels , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[18]  M.F.J. Pinkney,et al.  Unmanned aerial vehicle (UAV) communications relay , 1996, Proceedings of MILCOM '96 IEEE Military Communications Conference.

[19]  David W. Matolak,et al.  Vehicle–Vehicle Channel Models for the 5-GHz Band , 2008, IEEE Transactions on Intelligent Transportation Systems.

[20]  Mustafa M. Matalgah,et al.  Performance analysis of multi-carrier relay-based UAV network over fading channels , 2010, 2010 IEEE Globecom Workshops.

[21]  Salama Ikki,et al.  Performance Analysis of Dual Hop Relaying over Non-Identical Weibull Fading Channels , 2009, VTC Spring 2009 - IEEE 69th Vehicular Technology Conference.

[22]  Yongming Huang,et al.  Outage probability minimization for low-altitude UAV-enabled full-duplex mobile relaying systems , 2018, China Communications.

[23]  Maurizio Magarini,et al.  Performance Analysis of UAV Cellular Communications , 2019, 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW).

[24]  Hubregt J. Visser,et al.  RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements , 2013, Proceedings of the IEEE.

[25]  George J. Vachtsevanos,et al.  Handbook of Unmanned Aerial Vehicles , 2014 .

[26]  Norman C. Beaulieu,et al.  Performance analysis of digital modulations on Weibull fading channels , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[27]  Mischa Dohler,et al.  Cooperative Communications: Hardware, Channel and PHY , 2010 .

[28]  Dushantha Nalin K. Jayakody,et al.  Pay-As-You-Go: A Wireless Power Transfer-Enabled Beamforming for Cooperative Communication Systems , 2021, IEEE Wireless Communications Letters.

[29]  Xiaodong Wang,et al.  Wireless Information and Energy Transfer in Fading Relay Channels , 2016, IEEE Journal on Selected Areas in Communications.