Tuning PID Controller Using Multiobjective Ant Colony Optimization

This paper treats a tuning of PID controllers method using multiobjective ant colony optimization. The design objective was to apply the ant colony algorithm in the aim of tuning the optimum solution of the PID controllers (Kp, Ki, and Kd) byminimizing the multiobjective function. The potential of using multiobjective ant algorithms is to identify the Pareto optimal solution. The other methods are applied to make comparisons between a classic approach based on the "Ziegler-Nichols" method and a metaheuristic approach based on the genetic algorithms. Simulation results demonstrate that the new tuning method using multiobjective ant colony optimization has a better control system performance compared with the classic approach and the genetic algorithms.

[1]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[2]  Marzuki Khalid,et al.  Tuning of a neuro-fuzzy controller by genetic algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[3]  S. J. Huang,et al.  Enhancement of Hydroelectric Generation Scheduling Using Ant Colony System-Based Optimization Approaches , 2001, IEEE Power Engineering Review.

[4]  Alain Hertz,et al.  Ants can colour graphs , 1997 .

[5]  Abbas Afshar,et al.  MULTI-OBJECTIVE OPTIMIZATION OF TIME-COST-QUALITY USING MULTI-COLONY ANT ALGORITHM , 2007 .

[6]  Aytekin Bagis,et al.  Determination of the PID Controller Parameters by Modified Genetic Algorithm for Improved Performance , 2007, J. Inf. Sci. Eng..

[7]  Masahiro Kaneda,et al.  A design of self-tuning PID controllers using a genetic algorithm , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[8]  Dong Hwa Kim Tuning of a PID controller using an artificial immune network model and local fuzzy set , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[9]  Liu Yang,et al.  Research on Ant Colony Neural Network PID Controller and Application , 2007, Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007).

[10]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[11]  G. Reinelt The traveling salesman: computational solutions for TSP applications , 1994 .

[12]  Nikolaos Papanikolopoulos,et al.  Incremental fuzzy expert PID control , 1990 .

[13]  Ying-Tung Hsiao,et al.  Ant colony optimization for designing of PID controllers , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[14]  Marco Dorigo,et al.  Ant Colonies for Adaptive Routing in Packet-Switched Communications Networks , 1998, PPSN.

[15]  John Douglas Birdwell,et al.  Fuzzy logic-based PID autotuner design using simulated annealing , 1994, Proceedings of IEEE Symposium on Computer-Aided Control Systems Design (CACSD).

[16]  Luca Maria Gambardella,et al.  An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem , 2000, INFORMS J. Comput..

[17]  Thomas Stützle,et al.  ACO algorithms for the quadratic assignment problem , 1999 .

[18]  A. Visioli Tuning of PID controllers with fuzzy logic , 2001 .

[19]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[20]  Anant Oonsivilai,et al.  Application of Adaptive Tabu Search for Optimum PID Controller tuning AVR System , 2008 .

[21]  Luca Maria Gambardella,et al.  MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows , 1999 .

[22]  S. Easter Selvan,et al.  Novel Technique for PID Tuning by Particle Swarm Optimization , 2003 .