iVisual: An Intelligent Visual Sensor SoC With 2790 fps CMOS Image Sensor and 205 GOPS/W Vision Processor

iVisual, an intelligent visual sensor SoC integrating 2790 fps CMOS image sensor and 76.8 GOPS, 374 mW vision processor, is implemented on a 7.5 mm t 9.4 mm die in a UMC 0.18 mum CMOS Image Sensor process. Light-in, answer-out SoC architecture is adopted to avoid possible privacy problems. A feature processor is designed to eliminate the dataflow mismatch between processor array and scalar processor to increase 36% of average throughput. To increase hardware utilization, an inter-processor synchronization scheme is adopted to increase 23% of average throughput. Memory access is reduced by 94% to save 726 mW of power consumption. A bitplane-based single port memory structure is adopted to reduce SRAM area. The 205 GOPS/W power efficiency and 1.16 GOPS/mm2 area efficiency are therefore achieved by use of the proposed techniques.

[1]  R. Etienne-Cummings,et al.  A 128 x128 33mW 30frames/s single-chip stereo imager , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[2]  M.M. Trivedi,et al.  Visual Modules for Head Gesture Analysis in Intelligent Vehicle Systems , 2006, 2006 IEEE Intelligent Vehicles Symposium.

[3]  I. Kuroda,et al.  A 51.2 GOPS scalable video recognition processor for intelligent cruise control based on a linear array of 128 4-way VLIW processing elements , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[4]  Piotr Dudek,et al.  A general-purpose processor-per-pixel analog SIMD vision chip , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  S. Kawahito,et al.  Noise analysis of high-gain, low-noise column readout circuits for CMOS image sensors , 2004, IEEE Transactions on Electron Devices.

[6]  Liang-Gee Chen,et al.  iVisual: An intelligent visual sensor SoC with 2790fps CMOS image sensor and 205GOPS/W vision processor , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[7]  Ramakant Nevatia,et al.  Tracking multiple humans in complex situations , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  I. Takayanagi,et al.  A 1.25-inch 60-frames/s 8.3-M-pixel digital-output CMOS image sensor , 2005, IEEE Journal of Solid-State Circuits.

[9]  R.P. Kleihorst,et al.  Xetal-II: A 107 GOPS, 600 mW Massively Parallel Processor for Video Scene Analysis , 2008, IEEE Journal of Solid-State Circuits.

[10]  S. Miaou,et al.  A Customized Human Fall Detection System Using Omni-Camera Images and Personal Information , 2006, 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, 2006. D2H2..

[11]  Azriel Rosenfeld,et al.  Tracking Groups of People , 2000, Comput. Vis. Image Underst..

[12]  S. Watanabe,et al.  A 1/1.8-inch 6.4 MPixel 60 frames/s CMOS Image Sensor With Seamless Mode Change , 2006, IEEE Journal of Solid-State Circuits.

[13]  K. S. Venkatesh,et al.  Activity Discovery from Surveillance Videos , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[14]  Paul Wielage,et al.  XETAL-II: A 107 GOPS, 600mW Massively-Parallel Processor for Video Scene Analysis , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[15]  S. Watanabe,et al.  A 1/1.8-inch 6.4MPixel 60 frames/s CMOS Image Sensor with Seamless Mode Change , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[16]  Liang-Gee Chen,et al.  iVisual: An Intelligent Visual Sensor SoC with 2790fps CMOS Image Sensor and 205GOPS/W Vision Processor , 2008, ISSCC.

[17]  Wen-Chung Kao,et al.  Design considerations of color image processing pipeline for digital cameras , 2006, IEEE Transactions on Consumer Electronics.

[18]  Zhong Zhang,et al.  The Intelligent vision sensor: Turning video into information , 2007, 2007 IEEE Conference on Advanced Video and Signal Based Surveillance.

[19]  Max Van Kleek,et al.  Virtual mouse vision based interface , 2004, IUI '04.

[20]  Liang Wang From Blob Metrics to Posture Classification to Activity Profiling , 2006, 18th International Conference on Pattern Recognition (ICPR'06).